SHINTABELLA, Rosena and Widodo, Catur Edi and Wibowo, Adi (2024) OPTIMALISASI STACKING ENSEMBLE MACHINE LEARNING DENGAN ALGORITMA GENETIKA UNTUK PREDIKSI UMUR TRANSFORMATOR DISTRIBUSI LISTRIK. Masters thesis, UNIVERSITAS DIPONEGORO.
![]() |
Text
Cover.pdf Download (2MB) |
![]() |
Text
BAB I.pdf Download (508kB) |
![]() |
Text
BAB II.pdf Download (989kB) |
![]() |
Text
BAB III.pdf Restricted to Repository staff only Download (663kB) |
![]() |
Text
BAB IV.pdf Restricted to Repository staff only Download (3MB) |
![]() |
Text
BAB V.pdf Download (492kB) |
![]() |
Text
Daftar Pustaka.pdf Download (505kB) |
![]() |
Text
Lampiran.pdf Restricted to Repository staff only Download (2MB) |
Abstract
Transformator distribusi listrik memiliki peran penting dalam proses penyaluran energi listrik sehingga prediksi yang akurat untuk memprediksi umur transformator sangat penting untuk meningkatkan keandalan sistem secara keseluruhan. Dalam penelitian ini, mengusulkan model stacking ensemble yang dioptimalisasi menggunakan Algoritma Genetika (stacking-AG) untuk prediksi umur transformator distribusi listrik. Algoritma machine learning seperti Support Vector Machine (SVM), K-Nearest Neigbour (KNN) dan Multinomial Logistic Regression (MLR) untuk membentuk model stacking ensemble. Selain itu, algoritma genetika digunakan untuk mengoptimalkan base models dan meta model pada stacking ensemble. Proses optimasi bertujuan untuk meningkatkan kinerja prediksi dengan optimal. Penelitian ini diusulkan dengan menggunakan 10 data transformator hasil pengukuran arus dan suhu. Data transformator memiliki output multikelas sehingga algoritma yang digunakan adalah algoritma machine learning untuk kasus multikelas. Hasil penelitian menunjukkan bahwa model stacking-AG meningkatkan kinerja prediksi umur transformator distribusi listrik dengan tingkat rata-rata evaluasi tertinggi (akurasi, presisi, recall dan f1-score) meningkat sebesar 1,25% sampai 15,5%. Hasil error yang dihasilkan metode stacking-AG lebih minim dengan tingkat error pada MSE menurun 0,02-0,49 dan RMSE menurun 0,09-0,63. Model stacking-AG yang dikembangkan pada penelitian ini menghasilkan implementasi praktis dalam sistem distribusi listrik, dimana prediksi umur transformator yang akurat dapat menghasilkan jadwal pemeliharaan yang optimal, mengurangi kerusakan, dan meningkatkan keandalan sistem secara keseluruhan.
Kata kunci: Prediksi Umur Transformator, Stacking Ensemble, Algoritma Genetika, Stacking-GA
Electricity distribution transformers play a crucial role in the process of electricity distribution system, making accurate of transformer life prediction essential for enhancing overall system reliability. This study proposes a stacking ensemble model optimized using Genetic Algorithm (stacking-GA) for predicting the life of electricity distribution transformers. Machine learning algorithms such as Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Multinomial Logistic Regression (MLR) are employed to form the stacking ensemble model. Additionally, genetic algorithm is utilized to optimize the base models and meta model in the stacking ensemble. The optimization process aims to enhance prediction performance optimally. This research is conducted using 10 transformers data resulting from current and temperature measurements. The transformer data has multiclass output, thus machine learning algorithms for multiclass cases are utilized. The research results indicate that the stacking-AG model improves the prediction performance of electricity distribution transformer lifespan with the highest average evaluation rates (accuracy, precision, recall, and f1-score) ranging from 1.25% to 15.5%. The error results produced by the stacking-AG method are minimized, with the error rates in MSE decreasing by 0.02-0.49 and RMSE decreasing by 0.09-0.63. The stacking-GA model developed in this research yields practical implementation in the electricity distribution system, where accurate of transformer life prediction can generate optimal maintenance schedules, reduce damage, and enhance overall system reliability.
Keywords: Transformer Life Prediction, Stacking Ensemble, Genetic Algorithm, Stacking-GA
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | Prediksi Umur Transformator, Stacking Ensemble, Algoritma Genetika, Stacking-GA |
Subjects: | Sciences and Mathemathic |
Divisions: | Postgraduate Program > Master Program in Information System |
Depositing User: | ekana listianawati |
Date Deposited: | 09 Sep 2024 07:24 |
Last Modified: | 09 Sep 2024 07:24 |
URI: | https://eprints2.undip.ac.id/id/eprint/26428 |
Actions (login required)
![]() |
View Item |