Search for collections on Undip Repository

IMPLEMENTASI ALGORITMA SUPPORT VECTOR MACHINE (SVM) UNTUK ANALISIS KLASIFIKASI SENTIMEN KOMENTAR APLIKASI E-TICKTETING PADA PLAY STORE

Arifa, Ilham Putra (2020) IMPLEMENTASI ALGORITMA SUPPORT VECTOR MACHINE (SVM) UNTUK ANALISIS KLASIFIKASI SENTIMEN KOMENTAR APLIKASI E-TICKTETING PADA PLAY STORE. Undergraduate thesis, Universitas Diponegoro.

[thumbnail of JUDUL.pdf] Text
JUDUL.pdf

Download (1MB)
[thumbnail of BAB I.pdf] Text
BAB I.pdf
Restricted to Repository staff only

Download (338kB)
[thumbnail of BAB II.pdf] Text
BAB II.pdf
Restricted to Repository staff only

Download (865kB)
[thumbnail of BAB III.pdf] Text
BAB III.pdf
Restricted to Repository staff only

Download (1MB)
[thumbnail of BAB IV.pdf] Text
BAB IV.pdf
Restricted to Repository staff only

Download (1MB)
[thumbnail of BAB V.pdf] Text
BAB V.pdf
Restricted to Repository staff only

Download (227kB)
[thumbnail of DAFTAR PUSTAKA.pdf] Text
DAFTAR PUSTAKA.pdf
Restricted to Repository staff only

Download (128kB)
[thumbnail of LAMPIRAN.pdf] Text
LAMPIRAN.pdf
Restricted to Repository staff only

Download (13kB)

Abstract

Penting bagi penyedia produk atau jasa untuk mengetahui tanggapan konsumen
mengenai produk atau jasa yang mereka tawarkan. Tidak bisa dipungkiri bahwa
tanggapan konsumen yang muncul dapat memengaruhi citra dari penyedia produk atau
jasa. Akan tetapi, memantau dan mengklasifikasikan tanggapan dari konsumen bukanlah
hal yang mudah. Pada perusahaan besar seperti Traveloka, Tiket.com, Pegipegi dan
Mr.Aladin tanggapan yang dimuat jumlahnya terlalu banyak untuk diproses apabila
dilakukan secara manual. Oleh karena itu, diperlukan sebuah metode atau teknik khusus
yang mampu menganalisis serta mengelompokan tanggapan-tanggapan konsumen secara
otomatis, apakah termasuk sentimen positif atau negatif. Dengan memanfaatkan machine
learning dapat dilakukan klasifikasi secara massif bagaimana tanggapan atau opini
pengguna aplikasi terhadap layanan atau produk tersebut melalui penerapan Algoritma
klasifikasi Support Vecvtor Machine.
Dalam penelitian ini dilakukan pengambilan data review pada PlayStore
menggunakan teknik scraping yang kemudian data yang didapat akan dilakukan
prapengolahan data. Setelah dilakukan prapengolahan data, data akan dikelompokan
menjadi data uji dan data latih dimana data latih akan digunakan untuk proses pelatihan
model yang dibuat menggunakan algortima klasifikasi Support Vector Machine (SVM)
melalui beberapa tahap pengujian model sehingga didapatkan hasil paling optimal pada
model.
Hasil penelitian berdasarkan dari tahapan pengujian model yang telah dilakukan
mendapatkan accuracy 91,30%, Precision 91,64%, dan Recall 90,99%. Hasil akurasi
tersebut dipengaruhi oleh beberapa hal, yaitu pertama komposisi jumlah data train dan
data test melalui k-fold validation, jumlah dataset yang digunakan dan komposisi
pelabelan komentar positif dan negatif

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Klasifikasi, Analisis Sentimen,scraping, prapengolahan data, Support Vector Machine (SVM), Traveloka, Tiket.com, Pegipegi, Mr.Aladin
Subjects: Engineering
Divisions: Faculty of Engineering > Department of Computer Engineering
Depositing User: Teknik Komputer
Date Deposited: 03 May 2023 07:16
Last Modified: 26 May 2023 08:13
URI: https://eprints2.undip.ac.id/id/eprint/12497

Actions (login required)

View Item View Item