Search for collections on Undip Repository

RANCANG BANGUN SISTEM DAN EVALUASI MODEL MACHINE LEARNING MOBILENETSV2 DAN NASNET UNTUK MENDETEKSI EMOSI PADA WAJAH

LIESTANTYO H, Noor Bhagaskoro and Widodo, Aris Puji and Suryono, Suryono (2021) RANCANG BANGUN SISTEM DAN EVALUASI MODEL MACHINE LEARNING MOBILENETSV2 DAN NASNET UNTUK MENDETEKSI EMOSI PADA WAJAH. Masters thesis, School of Postgraduate Studies.

[img] Text
COVER.pdf

Download (182kB)
[img] Text
BAB I.pdf

Download (18kB)
[img] Text
BAB II.pdf

Download (163kB)
[img] Text
BAB III.pdf
Restricted to Repository staff only

Download (67kB)
[img] Text
BAB IV.pdf
Restricted to Repository staff only

Download (404kB)
[img] Text
BAB V.pdf

Download (5kB)
[img] Text
DAFTAR PUSTAKA.pdf

Download (236kB)

Abstract

Deteksi ekpresi wajah merupakan langkah pertama yang harus dilakukan dalam analisis pengenalan ekspresi wajah Ekpresi wajah seperti emosi merupakan aspek penting dalam kehidupan manusia, dengan diketahuinya ekpresi dari emosi dapat mempengaruhi beberapa aspek kehidupan manusia seperti pengambilan keputusan, tingkat agresivitas, nafsu makan, reaksi obat yang diminum dan lain- lain dimana baik dan buruknya sangat dipengaruhi oleh emosi positif atau negatif seseorang. Sistem informasi deteksi emosi diperlukan agar deteksi emosi seseorang dapat dilakukan secara realtime dan metode yang diterapkan untuk deteksi emosi menggunakan Machine Learning dengan membandingkan model MobileNet v2 dan NasNet dengan melatih model menggunakan dataset Facial Expression Recognition 2013 (FER 2013). Metode yang dilakukan oleh Sistem Informasi Deteksi Emosi adalah dengan mengambil data gambar pada seseorang saat melakukan screening dan sistem mampu melakukan deteksi emosi secara cepat dan tepat dengan tingkat akurasi 78% sehingga pertolongan dapat dilakukan sedini mungkin.
Kata kunci: Machine Learning, MobileNets v2, Nasnet, FER 2013, Deteksi Emosi.

Detection of facial expressions is the first step that must be done in the analysis of facial expression recognition. Facial expressions such as emotions are an important aspect of human life, knowing the expression of emotions can affect several aspects of human life such as decision making, level of aggressiveness, appetite, reactions to drugs taken, and others where the good and the bad are strongly influenced by a person's positive or negative emotions. An emotion detection information system is needed so that a person's emotion detection can be done in real-time and the method applied for emotion detection uses Machine Learning by comparing the MobileNet V2 and NasNet models by training the model using a dataset Facial Expression Recognition 2013 (FER 2013). The method used by the Emotion Detection Information System is to take image data on a person during screening and the system is able to detect emotions quickly and precisely with an accuracy rate of 78% so that help can be done as early as possible.
Keyword: Machine Learning, MobileNets v2, Nasnet, FER 2013, Facial Expressions.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Machine Learning, MobileNets v2, Nasnet, FER 2013, Deteksi Emosi
Subjects: Sciences and Mathemathic
Divisions: Postgraduate Program > Master Program in Information System
Depositing User: ekana listianawati
Date Deposited: 02 Sep 2022 07:26
Last Modified: 02 Sep 2022 07:26
URI: https://eprints2.undip.ac.id/id/eprint/8029

Actions (login required)

View Item View Item