Search for collections on Undip Repository

PREDIKSI PERTUMBUHAN BIBIT TANAMAN PADA GREENHOUSE MENGGUNAKAN METODE ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS)

WIDIANA, Siska Ayu and Suryono, Suryono and Warsito, Budi (2020) PREDIKSI PERTUMBUHAN BIBIT TANAMAN PADA GREENHOUSE MENGGUNAKAN METODE ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS). Masters thesis, School of Postgraduate Studies.

[img] Text
COVER.pdf

Download (778kB)
[img] Text
BAB I.pdf

Download (439kB)
[img] Text
BAB II.pdf

Download (655kB)
[img] Text
BAB III.pdf
Restricted to Repository staff only

Download (574kB)
[img] Text
BAB IV.pdf
Restricted to Repository staff only

Download (831kB)
[img] Text
BAB V.pdf

Download (400kB)
[img] Text
DAFTAR PUSTAKA.pdf

Download (366kB)

Abstract

Ketahanan pangan merupakan masalah yang sangat mendasar yang terjadi pada semua negara karena terkait dengan kelangsungan hidup dan kesehatan dalam jangka panjang. Masalah yang muncul untuk meningkatkan ketahanan pangan adalah jumlah lahan yang tidak memiliki produktivitas. Salah satu solusi dari masalah tersebut yaitu dengan menghubungkan antara teknologi dan pertanian seperti greenhouse. Teknologi yang diterapkan berupa sistem untuk memberikan informasi pertumbuhan bibit tanaman yang meliputi suhu, kelembapan udara, kelembapan tanah, intensitas cahaya, lebar tanaman, jumlah daun, dan panjang batang tanaman. Pertumbuhan bibit tanaman diprediksi dengan model Adaptive Neuro Fuzzy Inference System (ANFIS) yang merupakan gabungan model fuzzy dan Jaringan Saraf Tiruan (JST). Sistem prediksi ANFIS dibangun menggunakan Matrix Laboratory (MATLAB) dengan data sebanyak 65 yang dibagi menjadi data training sebanyak 50 data dan data testing sebanyak 15 data. Data pertumbuhan bibit tanaman diproses dengan melatih dan menguji data berdasarkan tipe fungsi keanggotaan triangular. Hasil validasi yang dilakukan terhadap 15 data memberikan hasil akurasi berdasarkan error terendah dengan nilai threshold 2,5 didapatkan nilai Mean Square Deviation (MSD) hasil prediksi pertumbuhan bibit tanaman sebesar 0,01.
Kata kunci : Greenhouse, Bibit Tanaman, Prediksi, ANFIS, Jaringan Saraf Tiruan.

Food security is a very basic problem that occurs in all countries because it is related to long-term survival and health. The problem that arises to improve food security is the large amount of unproductive land. One solution to this problem is to link technology and agriculture like greenhouses. The technology applied is a system to provide information on plant seed growth including temperature, humidity, soil moisture, light intensity, plant width, number of leaves, and plant stem length. Plant seed growth is predicted using the Adaptive Neuro Fuzzy Inference System (ANFIS) model, which is a combination of fuzzy models and Artificial Neural Networks (ANN). ANFIS prediction system was built using Matrix Laboratory (MATLAB) with 65 data divided into 50 training data and 15 test data. Plant seed growth data with training and training data based on the type of triangle function. The results of the validation carried out on 15 data provided accurate results based on the lowest error with a threshold value of 2.5, the mean square deviation (MSD) was obtained as a result of predicting plant seed growth of 0.01.
Keywords : Greenhouse, Plant Seeds, Prediction, ANFIS, Artificial Neural Networks.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Greenhouse, Bibit Tanaman, Prediksi, ANFIS, Jaringan Saraf Tiruan.
Subjects: Sciences and Mathemathic
Divisions: Postgraduate Program > Master Program in Information System
Depositing User: ekana listianawati
Date Deposited: 22 Apr 2022 03:32
Last Modified: 22 Apr 2022 03:48
URI: https://eprints2.undip.ac.id/id/eprint/5883

Actions (login required)

View Item View Item