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Abstract

The carrier velocity for 2-dimensional (2-D) p-type
nanostructure was simulated in this paper. According
to the energy band diagram, the effective mass (m*) in
the p-type silicon is mostly dominated by heavy hole
because of the large gap between heavy hole and light
hole in k = 0. The carrier concentration calculation for
2-D, based on the Fermi — Dirac statistic on the order

of zero ( So ), was applied to obtain the intrinsic

velocity of carrier, in the term of thermal velocity vy,
The results for 2-D carrier velocity were modeled and
simulated, and the comparison for degenerate and
non-degenerate regime is presented for various
temperature and concentration. It is revealed that the
velocity is strongly dependent on concentration and
becomes independent of temperature at high
concentration.

1. Introduction

In the progressive development of electronic
devices nowadays, the deep understanding of the
carrier behavior is vital for modeling and
development of new appliances, ultimately when
the device dimension reaches nanometer scale. It
is widely known that the doping profiles of
semiconductor material, its corresponding
structure, energy band and ambient temperatures

will influence the overall device performance,
especially when the dimension is shrinking.
Moreover, the carrier degeneracy at higher

impurities needs to be specially considered for
ultra small dimension, that it behaves differently
from the non-degenerate one, which is commonly
used in macroscopic/ bulk scale.
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In nanoscale pMOS device, its channel region
under the gate and gate oxide is very thin (in the
order of nm), thus the carriers are confined in this
direction. On the contrary, the carriers can travel
easily in other directions, as its channel length
and also channel width are larger than the de
Broglie  wavelengthAp (~10 nm at room

temperature) [1]. Therefore, this device can be
considered as a 2-Dimensional device.

Previous models were based on charge calculations for
nanoscale transistor modeling. But their work was
based on the Maxwell Boltzman approximation
(nondegenerate regime) [2-4]; on the other hand the
nanoscale devices also operate in degenerate regime.
Some literatures discuss the carrier statistic and
velocity in 2-D system, but the specific discussion on
the p-type device in nanoscale is not sufficiently
deliberated, especially with the view on the intrinsic
velocity [5].

In this research we improved velocity approach in
nanoscale transistor modeling for both degenerate and
nondegenerate regime. This paper is an extended work
of Arora et.al[6] in determining the velocity of carrier
in nanoscale device for n-type device. The following
passages will discuss about the analytical modeling of
the carrier velocity in 2-dimensional PMOS device,
derived using physical approach, as well as the
parametrical simulation in the case of degeneracy and
non-degeneracy at various ambient temperatures and
concentrations.

2. Carrier statistic model

In 2D device, one side of the device has its length
confined to less than the de Broglie wavelength Ap, but
the other two directions are much larger than that
number (see Fig. 1, with the confinement is assumed in
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z-axis direction). Therefore energy spectrum can be
modeled as follows:
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Fig 1. Illustration of 2-D system, confined in the z-axis
direction (L, < Ap=10nm, Ly, >> Ap)
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where E,, is the energy at valence band,

#i = h/ 27 is the Planck’s constant, m* is the effective
mass of hole, 7 is the quantum number, k and k, are
the wave number for x and y direction, respectively, at

(o) mT/L(x,y)’

and L, is the length of the confinement in z-axis.
Effectively, the hole is concentrated in the lowest sub-
band at first quantum state, n=1.

The valence band consists of heavy hole (hh) and
light hole (Ih) bands. According to the energy band
diagram and the occupation ratio between both bands,
the p-type carrier is mostly dominated by heavy hole,
therefore hole transport in p-channel MOSFETs is
controlled by the properties of hh band, with the
overall effective mass m* = 0.48 m, [7, 8].

The probability of hole occupation in any state of
energy Ej is given by the complementary of Fermi-
Dirac distribution function,

quantum number of 7 as noted by k

1
Ep—Ey
kyT

1- f(E,) =

l+e

(2a)

where Ef; is the Fermi energy at which the probability
of occupation is half and T is the ambient temperature.
In the non-degeneracy case, this complementary
Fermi-Dirac distribution function will have the large
value of Er — E}, thus eq. (2) is essentially turned to
simpler yet valid formulation, the broadly popular
complementary Maxwell-Boltzmann approximation for
p-type devices:

Ep—E,
kgT

l—f(Ek)=e( (2b)

On the other hand, the shrinking of recent electronic
devices into nanoscale bring about the need of higher
carrier concentration that the use of degeneracy model
is a necessity now.
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Moreover, the extensive derivation to obtain density
of states D(E) in 2-D p-type MOSFET can be found in
[9] while the final formula is shown as follows:

D(E):ld_N:_L(zm*J

3
A dE 27\ R? ©)

3. Carrier velocity formulation

Let us take a look at the kinetic energy and its
relation with the valence band E,, and the energy state
E of a hole:

E, :E+%m*v2 4)

The arbitrary velocity of a hole can be directly

derived as:
|2(E,, —E)
V= |——F7—
m

Take a note that the thermal velocity of hole is
widely known as

©)

(6)

In the presence of high electric field €, the carrier
will eventually move in homogeneous direction,
parallel to the electric field, while in the absence of
electric field, the average velocity of all carrier will be
zero. The average drift velocity of carrier in the
presence of &, or we call it “intrinsic velocity” [6] can
be calculated using formula below:

E,

[MDeEYI - £ (E)IE
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v, =

1

In order to simplify the integration in Eq. (7), we
introduce two terms,

x=(E,—E,)/k,T (8a)

n,=(E, —E.) kT (8b)

Another important tool that needs to be introduced here
is the Fermi integral 3 (77) , which is defined as:
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where I['(j)is the Gamma function of j. The Fermi
integral in 0-th order 3, (77) is shown in Fig. 2.
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Fig. 2 The Fermi integral in 0" order as a function of

By combining Egs. (2)-(6)) and substituting them
into Eq. (7), added with some manipulations using Egs.
(8a), (8b) and (9), the intrinsic velocity v; could be
calculated and solved numerically as follow:

'(3/2).3,,,(n;)
i — Vih ~ (10a)
r1).3,(;)
b, = v, Y7 B2 0) o
2 3,(np)

4. Simulation results and discussions

According to equation (10b), we have the model of
carrier velocity in 2-dimensional p-type device. Let us
take a closer look on the temperature effect and also
the influence of carrier concentration on the carrier
velocity, both for degeneracy and non-degeneracy
cases. By recalling eq. (2b) for non-degeneracy case,
the Fermi integral of 2D devices in j-th order can be
simplified to:

— L
3,(n,)=e ()
Substituting eq. (11) into (10b), therefore the

intrinsic velocity of non-degeneracy regime can be
converted to:

(12)
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This formula is also the limit of intrinsic velocity of
low concentration device. To validate the model and
simplification presented by eqs. (10)-(12), the carrier
velocity of 2-D p-type MOS is numerically simulated.
Fig. 3 clearly shows that the intrinsic velocity of carrier
is strongly dependent to temperature (T"?) for lower
concentration, as expected from eq. (13) and eventually
reaches the limit of non-degenerate model, for low
carrier concentration. It also reveals the lesser
influence of temperature on the intrinsic velocity when
the carrier concentration is higher, which tends to go to
degenerate regime.

For strongly degenerate case, the Fermi integral is
approximately transformed to:

- 1 77/‘+1 77j+1
3, = — e ——— (13)
rg+1yj+1 I'(j+2)
Later, the corresponding intrinsic velocity
eventually becomes:
2
v, ==v,.n"? (14)

3

Equating further using (6) and (8a), this result will
give us further impression that the intrinsic velocity
will behave independently over temperature at
degenerate regime. Now let us consider that the carrier
statistic of p-type is (from [9]) :

k,T
_mﬂh—g'SO(nv): NV'SO(UV)

Taking the notation of J,(77) from (15) and

inserting it back to eq. (10b), we find that the intrinsic
velocity is correlated to the carrier concentration, as an
alternative notion to eq. (14):

(15)
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Fig. 3 Intrinsic velocity v; versus temperature for several
carrier concentration of p-type MOS
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Fig. 4 The role of carrier concentration in the intrinsic
velocity, with the degeneracy case shown as limiting value
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Manipulating back eqs. (8), (14) and (16), we will

(16)

finally have:
v, —21/—2(5“ Er) 17
3
v =2 2 (18)

" 3m

The latest equation clearly suggests that the intrinsic
velocity is directly related to the carrier concentration
p'? for higher carrier concentration, in the strong
degenerate regime. The simulation of (Fig. 4) clearly
supports the argument, in addition with the
independence of v; from temperature variation for
higher concentration, as evident from the indifference
of graphs of various temperature at concentration
higher than 10'"® cm™, which eventually meet with the
degenerate intrinsic velocity. The figure also suggests
that the intrinsic velocity in degenerate regime is the
velocity limit at lowest temperature possible.

The saturation velocity can be predicted from this
simulation. Following the nature of maximum
concentration possible in silicon semiconductor, the
ultimate velocity that can be acquired in p-type device
would be around the order of 10° m/s, as if we follow
the trend from simulation. Moreover, the tendency of
velocity dependence on p’? can provide further
explanation on the expected bending of velocity curve
in higher concentration.
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5. Conclusion

We have presented the physics-based carrier
velocity model of 2-Dimensional pMOS silicon device.
By considering quantum state of 2D device, the carrier
statistic was modeled and the intrinsic velocity was
simulated as well. The intrinsic velocity in the presence
of external electric field is closely related to thermal
velocity in the case of non-degenerate regime, and
strongly dependent on the ambient temperature in 7" 2
form, while in the case of strong degeneracy, the
carrier concentration is influential in the velocity,
proportional to p’?. The simulation also reveals the
limit for intrinsic velocity, either in temperature
variation or in carrier concentration, and it is expected
that the ultimate velocity will be around that value.
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