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Abstract 
 

The carrier velocity for 2-dimensional (2-D) p-type 
nanostructure was simulated in this paper. According 
to the energy band diagram, the effective mass (m*) in 
the p-type silicon is mostly dominated by heavy hole 
because of the large gap between heavy hole and light 
hole in k = 0. The carrier concentration calculation for 
2-D, based on the Fermi – Dirac statistic on the order 
of zero ( 0ℑ ), was applied to obtain the intrinsic 
velocity of carrier, in the term of thermal velocity vth. 
The results for 2-D carrier velocity were modeled and 
simulated, and the comparison for degenerate and 
non-degenerate regime is presented for various 
temperature and concentration. It is revealed that the 
velocity is strongly dependent on concentration and 
becomes independent of temperature at high 
concentration.  
 
 
1. Introduction 
 

In the progressive development of electronic 
devices nowadays, the deep understanding of the 
carrier behavior is vital for modeling and 
development of new appliances, ultimately when 
the device dimension reaches nanometer scale. It 
is widely known that the doping profiles of 
semiconductor material, its corresponding 
structure, energy band and ambient temperatures 
will influence the overall device performance, 
especially when the dimension is shrinking. 
Moreover, the carrier degeneracy at higher 
impurities needs to be specially considered for 
ultra small dimension, that it behaves differently 
from the non-degenerate one, which is commonly 
used in macroscopic/ bulk scale.  

In nanoscale pMOS device, its channel region 
under the gate and gate oxide is very thin (in the 
order of nm), thus the carriers are confined in this 
direction. On the contrary, the carriers can travel 
easily in other directions, as its channel length 
and also channel width are larger than the de 
Broglie wavelength λD (~10 nm at room 
temperature)  [1]. Therefore, this device can be 
considered as a 2-Dimensional device.  
Previous models were based on charge calculations for 
nanoscale transistor modeling. But their work was 
based on the Maxwell Boltzman approximation 
(nondegenerate regime) [2-4]; on the other hand the 
nanoscale devices also operate in degenerate regime. 
Some literatures discuss the carrier statistic and 
velocity in 2-D system, but the specific discussion on 
the p-type device in nanoscale is not sufficiently 
deliberated, especially with the view on the intrinsic 
velocity  [5]. 
In this research we improved velocity approach in 
nanoscale transistor modeling for both degenerate and 
nondegenerate regime. This paper is an extended work 
of Arora et.al [6] in determining the velocity of carrier 
in nanoscale device for n-type device. The following 
passages will discuss about the analytical modeling of 
the carrier velocity in 2-dimensional PMOS device, 
derived using physical approach, as well as the 
parametrical simulation in the case of degeneracy and 
non-degeneracy at various ambient temperatures and 
concentrations.  
 
2. Carrier statistic model 
  

In 2D device, one side of the device has its length 
confined to less than the de Broglie wavelength λD, but 
the other two directions are much larger than that 
number (see Fig. 1, with the confinement is assumed in 
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where )( jΓ is the Gamma function of j. The Fermi 

integral in 0-th order )(0 ηℑ is shown in Fig. 2.  

 

Fig. 2 The Fermi integral in 0th order as a function of η 

By combining Eqs. (2)-(6)) and substituting them 
into Eq. (7), added with some manipulations using Eqs. 
(8a), (8b) and (9), the intrinsic velocity vi could be 
calculated and solved numerically as follow: 
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4. Simulation results and discussions 
 

According to equation (10b), we have the model of 
carrier velocity in 2-dimensional p-type device. Let us 
take a closer look on the temperature effect and also 
the influence of carrier concentration on the carrier 
velocity, both for degeneracy and non-degeneracy 
cases. By recalling eq. (2b) for non-degeneracy case, 
the Fermi integral of 2D devices in j-th order can be 
simplified to: 

 ( ) veηvj
η=ℑ  (11) 

Substituting eq. (11) into (10b), therefore the 
intrinsic velocity of non-degeneracy regime can be 
converted to: 

 thi vπv
2

=  (12) 

This formula is also the limit of intrinsic velocity of 
low concentration device. To validate the model and 
simplification presented by eqs. (10)-(12), the carrier 
velocity of 2-D p-type MOS is numerically simulated. 
Fig. 3 clearly shows that the intrinsic velocity of carrier 
is strongly dependent to temperature (T1/2) for lower 
concentration, as expected from eq. (13) and eventually 
reaches the limit of non-degenerate model, for low 
carrier concentration. It also reveals the lesser 
influence of temperature on the intrinsic velocity when 
the carrier concentration is higher, which tends to go to 
degenerate regime.   

For strongly degenerate case, the Fermi integral is 
approximately transformed to: 
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Later, the corresponding intrinsic velocity 
eventually becomes: 

 2/1.
3
2 ηthi vv =  (14) 

Equating further using (6) and (8a), this result will 
give us further impression that the intrinsic velocity 
will behave independently over temperature at 
degenerate regime. Now let us consider that the carrier 
statistic of p-type is (from [9]) : 

 ( ) ( )vVv
B NTkmp ηη

π 002

*

.. ℑ=ℑ=
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Taking the notation of )(0 ηℑ from (15) and 
inserting it back to eq. (10b), we find that the intrinsic 
velocity is correlated to the carrier concentration, as an 
alternative notion to eq. (14): 

 

Fig. 3 Intrinsic velocity vi versus temperature for several 
carrier concentration of p-type MOS 
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Fig. 4 The role of carrier concentration in the intrinsic 

velocity, with the degeneracy case shown as limiting value 
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Manipulating back eqs. (8), (14) and (16), we will 
finally have: 
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The latest equation clearly suggests that the intrinsic 
velocity is directly related to the carrier concentration 
p1/2 for higher carrier concentration, in the strong 
degenerate regime. The simulation of (Fig. 4) clearly 
supports the argument, in addition with the 
independence of vi from temperature variation for 
higher concentration, as evident from the indifference 
of graphs of various temperature at concentration 
higher than 1018 cm-2, which eventually meet with the 
degenerate intrinsic velocity. The figure also suggests 
that the intrinsic velocity in degenerate regime is the 
velocity limit at lowest temperature possible. 

The saturation velocity can be predicted from this 
simulation. Following the nature of maximum 
concentration possible in silicon semiconductor, the 
ultimate velocity that can be acquired in p-type device 
would be around the order of 105 m/s, as if we follow 
the trend from simulation. Moreover, the tendency of 
velocity dependence on p1/2 can provide further 
explanation on the expected bending of velocity curve 
in higher concentration. 
 

5. Conclusion 
 

We have presented the physics-based carrier 
velocity model of 2-Dimensional pMOS silicon device. 
By considering quantum state of 2D device, the carrier 
statistic was modeled and the intrinsic velocity was 
simulated as well. The intrinsic velocity in the presence 
of external electric field is closely related to thermal 
velocity in the case of non-degenerate regime, and 
strongly dependent on the ambient temperature in T1/2 
form, while in the case of strong degeneracy, the 
carrier concentration is influential in the velocity, 
proportional to p1/2. The simulation also reveals the 
limit for intrinsic velocity, either in temperature 
variation or in carrier concentration, and it is expected 
that the ultimate velocity will be around that value.  
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