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Artificial Intelligence Techniques for SPICE Optimization of
MOSFET Modeling

Abstract—This paper proposes new method for optimize and
verified electric characterization graph of MOSFET by using
artificial neural network. Optimization using Neural Network
(ONN) will compare current-voltage (I-V) Characteristic graph
between the TCAD simulation and TSPICE [Ebdeling as desire
data control a model parameter of BSIM. In this paper, the
neural network method is dynamic feedforward Neural
Network. After NN training, the best result is at Neural
Network architecture of 36-30-10-5 with Mean Squared Error
(MSE) of 1e-28 at epoch of 5.

3 I. INTRODUCTION

Submicron CMOS technology appears to be a feasible
and cost-effective integration solution for electronics device
systems. Effectively, the maturity of silicon-based CMOS
technology for small device feature size and low voltage
digital circuits and also the recent progresses of MOSFETs
performances. A model will help us to understand the
meaning of some of the parameters that

appear in its mathematical model.

Besides the physical parameters often introduces
nonphysical parameters that do not necessarily need to
correspond to some physical parameter. Such nonphysical
parameters often combine the effects of one or more
physical effects. Each MOSFET model is characterized with
a set of parameters and these parameters have to be
estimated if they cannot be measured either easily or not at
all. The process of estimating model parameters is called
parameter extraction and a brief description of various
optimization methods that can be used to control the
progress of a parameter extraction algorithm follows.

Parameters of MOSFET model may represent component

values such as the width and length of MOSFETSs, or any
other quantities that are fixed by the particular choice of
circuit design and manufacturing process, but that may, at
least in principle, be adapted to optimize circuit or device
performance. Constants of nature, such as the speed of light
or the boltzmann constant, are therefore not considered as
pannctcrs.

Existing approaches for transistor modeling are based on
lumped equivalent circuits. The equivalent circuit approach
involves determination of an equivalent circuit topology and
formulation of the circuit elements. Such an approach not
only rcnrcs experience but also a difficult trial and
process. As the drain current depends of the drain-to-source,
Vd and gate-to-source,Vg, bias voltages, it was implemented
into SPICE as a voltage-controlled current source.

Artificial Neural Network (ANN) has been recognize as a
powerful tool for modeling and optimization problems|1].
Therefore, this paper proposes ANN method for modeling
and optimization of current-voltage (1-V) characterization
ntwccn the TCAD Simulation and TSPICE modeling. The
universal approximation property of ANN provides themthe
ability to learn any arbitrarily nonlinear input-output
relationships |2] from corresponding measured or simulated
data for investigating NN approaches to model transistor DC
[3], small signal [4], and large-signal [5] behaviors and also
presents possible ways to continue extract some other circuit
value such as parasitic capacitance, time delay and speed
performance.

II. THEORY

A MG'FET Device

The Metal Oxide Substrate Field Effect Transistor
(MOSFET) is the first transistor type ever manufactured and
is the most common FET transistor.

Fig. 1 shows N-MOSFET transistor which consists of n-
type semiconductor material and its channel is made of p-
type material. N-type semiconductor materials are based on
a doping process which adds certain types of atoms to the
semiconductor to increase the number of free negative
mobility carriers — electrons. The process of n-type doping
produces an abundance of electrons in the material and
therefore electrons carry the charge. If we start with all
voltages grounded and apply a positive voltage at gate
(Vas), an electric field is created. This forces electrons move
towards the gate oxide pushing out holes. Since the gate




oxide is an insulator, electrons cannot pass through for a
voltage that is less than some threshold and form an electric

Fig. 1. MOSFET Device

field known as the “Inversion Layer” which connects the
drain and source and closes the electric circuit. Electric
current can now flow from in between source and drain and
moreover drain (or source) can supply more electrons. The
current gain capability of a Field-Effect-Transistor (FET) is
easily explained by the fact that no gate curmrent is required
to maintain the inversion layer and the resulting current
between drain and source. The device has therefore an
infinite current gain in DC. The current gain is inversely
proportional to the signal frequency, reaching unity current
gain at the transit frequency. The voltage gain of the
MOSFET is caused by the fact that the current saturates at
higher drain-source voltages, so that a small drain current
variation can cause a large drain voltage variation [6].

B. MOSFET Modeling

Vas (gate-source voltage) controls the value of Ibs
(drainsource current) thus how much current flows in
between drain and source by creating an inversion layer
(electric field) which connects the circuit in between drain
and source. Ips and Ves together with Vps (drain-source
voltage) and Ves (base-source voltage) control the shape of
the inversion layer and are the only variables we measure.
The value of Ibs is transformed by means of a mathematical
model where take all information that we know and with the
use of mathematical modeling construct a function which
presents the dependency. The large signal currents of the Io
— Vs plane are calculated from the expression:
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Where it is assumed that the drain and source are designated
so that Vs = 0. Vpsar is a parameter that characterizes the
transition between the ohmic and saturation regions.

Operation in Quadrant 3 of the Io— Vs plane is
characterized by the same equations, where the drain and
source designations are intemally made so that Vos = 0.[7]
The device element line (card) in the SPICE deck contains
information about the nodal location of the device in the
circuit as well as geometrical information about the device
and optional initial condition variables. In the device
clement line, reference is made to a specific device model.
The .MODEL line (card) in the SPICE deck contains generic
information about the electrical characteristics of device
formed in a process based upon the characterizing process
parameters. Each device has a separate device element line.
Typically, many devices will reference a single MODEL
line.

C. Optimization Methods

In order to be able to classify parameter extraction methods,
brief information about the methods and heuristics that are
used to obtain mathematical model parameters andfor
control the progress of the parameter extraction algorithm
are necessary. This overview is also necessary because the
following methods either already have been used for
parameter extraction or could uscd in future. Parameter
extraction of MOSFET model for each process technology
start with an initial set of parameters that comes from, 1)
Vendor supplied models. 2) Previous MOSFET models. 3)
Extracted models fla’l physical fundamentals. Interaction
between parameters that are optimized in a given strategy is
controlled by the maximum and minimum limit of each
parameter. There are nine optimization strategies that are
implemented such as Parameters in Threshold and
libthreshold Regions, Threshold Shift effect parameters,
“hreshold Shift and Channel Resistance effects parameters,
Threshold ﬂﬁ and Channel Resistance effects Binning
parameters, Low Bias Drain Saturated Clﬂnl parameters,
Low Bias Output Resistance Parameters, High Bias Drain
Saturated Current parameters, High Bias Output Resistance
Parameters, and Junctie Capacitance Parameters. All of
strategies presented are a standard optimization strategy and
it may vary from one technology to the other.[8]

D. Dynamic Feedfo d Neural Network

Dynamic feedforward ESural networks are conceived as
mathematical constructions, independent of any particular
physical representation or interpretation. This section shows
how these artificial neural networks can be related to device
émugm?ll%ggggu&to 1?§Oddi;th§% involye hl%?ical uantities like
s ges. Feedforward ncéural networks can,

under relatively mild conditions, be guaranteed to preserve
monotonicity in the multidimensional static behaviour. With
contemporary physical models, it is generally no longer
possible to guarantee monotonicity, due to the complexity of
the mathematical analysis needed to prove monotonicity. It
is an important property, however, because many devices are
known to have monotonic characteristics. A nonmonotonic
model for such a device may yield multiple spurious




solutions for the circuit in which it is applied and it may lead
to nonconvergence even during time domain circuit
simulation. The monotonicity guarantee for neural networks
can be maintained for highly nonlinear multidimensional
behaviour, which so far has not been possible with table
models without requiring excessive amounts of data.
Furthermore, the monotonicity guarantee is optional, such
that nonmonotonic static behaviour can still bemodelled.
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Figure 2. A dynamic feedforward neural network architecture.

ccdforward neural network will be characterized by the
number of layers ai the number of neurons per layer.
Layers are counted starting with the input layer as layer 0,
such that a network with output layer K involves a total of K
+ | layers (which would have been aycrs in casc one
prefers not to count the input layer). Layer k by definition
contains Nk neurons, where k = 0, . . ., K. The number Nk
may also be referred to as the width of layer k. Neurons that
are not directly connected to the inputs or outputs of the
network belong to a so-called hidden layer, of which there
el o iAo Dt weork Netwerk SRR
iK) 1K) LK) T NO
X =(x1 ,...Xw ).The neuron output vector yx (yix,. .

. ynex)' represents the vector of neuron outputs for layer &,
containing 28 its elements the output variable yik for each
individual on i in layer k. The network inputs will be

treated by a dummy neuron layer & = 0, with enforced
neuron j outputs yio = x;'", j =0, . . ., No. However, when
counting the number of neurons in a network, we will not
take the dummy input neurons into account. The logistic
function Hsi), is strictly monotonically increasing in si.
However, we will generally use nonzero v's and t's, and will
instead of the logistic function apply other infinitely smooth
(C*) nonlinear modelling functions F. The standard logistic
function lacks the common transition between highly
nonlinear and weakly nonlinear behaviour that is typical for
semiconductor devices and circuits.
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with dik =0

Preliminary experience with modeling MOSFET dc
characteristics indicates that this helps to avoid unacceptable
local minima in the error function (cost function) for
optimization-unacceptable in the sense that the results show
too gradual near-subthreshold transitions [9].

II. METHODOLOGY

The Artificial Neural Network method is that used for this
optimization is called Optimization using Neural Network
(ONN). The steps of ONN are showed at flow chart figure 3
below.

Training Data
T.C'D‘D ) -Input : I-V Graph
Simulation
- Target : Parameter

ONN Training

<= o

ONN Testing
Optimised
Graph

Figure 3. Optimization using Neural Network (ONN)
Flow chart

The process used to fabricate the planar and vertical
NMOS transistor will be simulated using TCAD Silvaco. It
is used to create the device structure, adding dopant,
defining electrodes and creating the mesh. The structure is
that resulted follow parameter at Table I below.

After that, the results from the simulation using Silvaco-
Atlas will get electrical characteristics such as 1d-Vd, Id-Vg,
C-V characteristics graph. In this paper, an only Id-Vd
characteristic is that optimized. The result data of TCAD
will be used as comparison data or optimization from ONN

TABEL 1
MOSFET DEVICE PARAMETER

Parameter Value
Type n-MOSFET
Body doping of Boron 910" em™
Polysilicon doping of Arsenic 110" em

Channel length (Lg) 150 nm

Oxide thickness (Tox) S5nm

method. The other hand, the electrical characteristics of
n)SFl:'.T can be obtained from SPICE. The ONN can be

trained usi ch t duge fi d D

nctllrgmélécl:?g sl‘ilor t }? % r{?, t ?: g%irﬁ?lg aggrlll'lp gs al%
collected ml'-SPICE simulations using BSIM3 according
tol3 pum tcchnology.'n: n MOSFET length and width are
1.5 pm and 3 um respectively. The device is fully

characterized from gathered data with Veis 1.1,2.2 and 3.3
V,and Varanging from 0 to 3.3V. The [-V characteristic




simulations were taken for the drain current la. The each Id-
Vd graph has physics value parameters, such as threshold
voltage (VTHO), the drain induced barrier lowering
(PDIBLC), L dependent coefficient of the DIBL effect in
output resistance (DROUT), Gate dependence of early
voltage (PVAG), channel length modulation (PCLM), and
Drain saturation voltage (VSAT) parameters. If the
parameters change then the graph will change according to
what changed parameter. The parameter is called as data
target. The pair of 1d-Vd graph and physics parameter as
ONN input and output respectively is showed at Figure 4
below.

Target :

Model Parameter
-VTHO
-PDIBLC
-DROUT
-PVAG

- PCLM

-VSAT

Input :
IV charactenstic

Graph

o P

Figure 4. Input-Target Data of the ONN method

TABLEII
ARTIFICIAL NEURAL NETWORK PARAMETER

Para mm Value
Network Type Feed-Forward Backpropagation
Training Function Trainlm
Adaption Training Function Learngdm
Error Function Meun Square Error
iput Transfer Fuction Tansig
Hidden Transfer Function Tansig
Output Transfer Function Purelin

More and more various pairs of input-target are more and
better. c training sets were that used follow the table II
above. Series of neural networks with different numbers of
hidden neurons are trained using Levenberg Marquardt
(trainlm) algorithm. The feed forward with various
architectures was found to provide the best trade-off
between the desired accuracy and the model complexity.

1. RESULT

The MOSFET device simulation using TCAD have gotten
electrical parameter result that can be shown at table 111
below. This parameter is obtained with planar nm}SFET
process parameter of substrate conccntlhn, 9.10°"7 em™,
source and drain doping concentration, 1.10'® cm™, channel
length (L), 150 nm and oxide thickness (to), Snm.

TABEL 111
ELECTRIC PERFORMANCE RESULT OF MOSFET
Parameter Value
Threshold Voltage (Vth) 077V
Leakage Current (Ioff) 136,10 ( Afum)
Drive Current (Ion) #06.107 (Afum)
DIBL 44 (mVAV)

Subthreshold Slope (8) 82 (mV/decade)

With the MOSFET structure, the electric characteristic is
used by SPICE model for optimizing process. Before and
after Optimizing using Neural Network process of Id-Vd
graphs can be described at figure 5 below.
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Figure 5. Optimization method using Artificial Neural Network

The ONN method used Neural Network process with its
parameters was declared at table I1. In this network type, it
used the feed-forward backpropagation method because this
method had the monotonicity guarantee for neural networks
that could be maintained for input and target nonlinear
multidimensional data, which so far had not been possible
with table models without requiring excessive amounts of
data. And also this method can avoid convergence problems,
because it avoids the need for an iterative solver. The graph
error can be shown at figure 6 below.
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Figure 6. Training Performance of ONN process

The stabi of feedforward neural networks can be
guaranteed. %ﬂability of feedforward neural nctwora
depends solely on the stability of its individual neurons. If
all neurons are stable, then the feedforward network is also
stable. For training process with various the network
architectures, graphs of error training showed Mean Square
Error (MSE) result that more and more reduce for all
architectures.

The training Mean Squared Errors (MSEs) of all
architectures are below of le-25 that was obtained after 5-6
iterations. The best result is at Neural Network architecture
of 36-30-10-5 with Mean Square Error (MSE) of le-28 at
epoch of 5.

IV. CONCLUSION

An alterative optimization method for optimize electric
characterization graph of MOSFET between MOSFET
model and measured/simulation using Neural Network was
proposed. The conventional optimization method is trial and
error method so that it need more time to achieve optimizing
result. The Optimization using Neural Network (Ol\a has
few steps and small error to obtained desire result. In this
paper, the neural network method is dynamic feedforward




Neural Network. After NN training, the best result is at
Neural Network architecture of 36-30-10-5 with Mean
Squared Error (MSE) of le-28 at epoch of 5.
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