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Abstract—This paper proposes new method for optimize and 
verified electric characterization graph of MOSFET by using 
artificial neural network. Optimization using Neural Network 
(ONN) will compare current-voltage (I-V) Characteristic graph 
between the TCAD simulation and TSPICE modeling as desire 
data control a model parameter of BSIM. In this paper, the 
neural network method is dynamic feedforward Neural 
Network. After NN training, the best result is at Neural 
Network architecture of 36-30-10-5 with Mean Squared Error 
(MSE) of 1e-28 at epoch of 5. 
 

I. INTRODUCTION 
ubmicron CMOS technology appears to be a feasible 
and cost-effective integration solution for electronics 

device systems. Effectively, the maturity of silicon-based 
CMOS technology for small device feature size and low 
voltage digital circuits and also the recent progresses of 
MOSFETs performances. A model will help us to 
understand the meaning of some of the parameters that 
appear in its mathematical model. 

Besides the physical parameters often introduces 
nonphysical parameters that do not necessarily need to 
correspond to some physical parameter. Such nonphysical 
parameters often combine the effects of one or more 
physical effects. Each MOSFET model is characterized with 
a set of parameters and these parameters have to be 
estimated if they cannot be measured either easily or not at 
all. The process of estimating model parameters is called 
parameter extraction and a brief description of various 
optimization methods that can be used to control the 
progress of a parameter extraction algorithm follows. 

Parameters of MOSFET model may represent component 
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values such as the width and length of MOSFETs, or any 
other quantities that are fixed by the particular choice of 
circuit design and manufacturing process, but that may, at 
least in principle, be adapted to optimize circuit or device 
performance. Constants of nature, such as the speed of light 
or the boltzmann constant, are therefore not considered as 
parameters. 

Existing approaches for transistor modeling are based on 
lumped equivalent circuits. The equivalent circuit approach 
involves determination of an equivalent circuit topology and 
formulation of the circuit elements. Such an approach not 
only requires experience but also a difficult trial and 
process. As the drain current depends of the drain-to-source, 
Vd and gate-to-source,Vg, bias voltages, it was implemented 
into SPICE as a voltage-controlled current source. 

Artificial Neural Network (ANN) has been recognize as a 
powerful tool for modeling and optimization problems[1]. 
Therefore, this paper proposes ANN method for modeling 
and optimization of current-voltage (I-V) characterization 
between the TCAD Simulation and TSPICE modeling. The 
universal approximation property of ANN provides them the 
ability to learn any arbitrarily nonlinear input-output 
relationships [2] from corresponding measured or simulated 
data for investigating NN approaches to model transistor DC 
[3], small signal [4], and large-signal [5] behaviors and also 
presents possible ways to continue extract some other circuit 
value such as parasitic capacitance, time delay and speed 
performance. 

 

II. THEORY 

A. MOSFET Device 
The Metal Oxide Substrate Field Effect Transistor 

(MOSFET) is the first transistor type ever manufactured and 
is the most common FET transistor. 

Fig. 1 shows N-MOSFET transistor which consists of n-
type semiconductor material and its channel is made of p-
type material. N-type semiconductor materials are based on 
a doping process which adds certain types of atoms to the 
semiconductor to increase the number of free negative 
mobility carriers — electrons. The process of n-type doping 
produces an abundance of electrons in the material and 
therefore electrons carry the charge. If we start with all 
voltages grounded and apply a positive voltage at gate 
(VGS), an electric field is created. This forces electrons move 
towards the gate oxide pushing out holes. Since the gate 
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oxide is an insulator, electrons cannot pass through for a 
voltage that is less than some threshold and form an electric 

 
Fig. 1. MOSFET Device 

 
field known as the “Inversion Layer” which connects the 
drain and source and closes the electric circuit. Electric 
current can now flow from in between source and drain and 
moreover drain (or source) can supply more electrons. The 
current gain capability of a Field-Effect-Transistor (FET) is 
easily explained by the fact that no gate current is required 
to maintain the inversion layer and the resulting current 
between drain and source. The device has therefore an 
infinite current gain in DC. The current gain is inversely 
proportional to the signal frequency, reaching unity current 
gain at the transit frequency. The voltage gain of the 
MOSFET is caused by the fact that the current saturates at 
higher drain-source voltages, so that a small drain current 
variation can cause a large drain voltage variation [6]. 
 

B. MOSFET Modeling 
VGS (gate-source voltage) controls the value of IDS 

(drainsource current) thus how much current flows in 
between drain and source by creating an inversion layer 
(electric field) which connects the circuit in between drain 
and source. IDS and VGS together with VDS (drain-source 
voltage) and VBS (base-source voltage) control the shape of 
the inversion layer and are the only variables we measure. 
The value of IDS is transformed by means of a mathematical 
model where take all information that we know and with the 
use of mathematical modeling construct a function which 
presents the dependency. The large signal currents of the ID 

– VDS plane are calculated from the expression: 
 
IG = IB = 0                (1) 
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Where it is assumed that the drain and source are designated 
so that VDS ≥ 0. VDSAT is a parameter that characterizes the 
transition between the ohmic and saturation regions.  

 

Operation in Quadrant 3 of the ID – VDS plane is 
characterized by the same equations, where the drain and 
source designations are internally made so that VDS ≥ 0.[7] 
The device element line (card) in the SPICE deck contains 
information about the nodal location of the device in the 
circuit as well as geometrical information about the device 
and optional initial condition variables. In the device 
element line, reference is made to a specific device model. 
The .MODEL line (card) in the SPICE deck contains generic 
information about the electrical characteristics of device 
formed in a process based upon the characterizing process 
parameters. Each device has a separate device element line. 
Typically, many devices will reference a single .MODEL 
line. 
 

C. Optimization Methods 
In order to be able to classify parameter extraction methods, 
brief information about the methods and heuristics that are 
used to obtain mathematical model parameters and/or 
control the progress of the parameter extraction algorithm 
are necessary. This overview is also necessary because the 
following methods either already have been used for 
parameter extraction or could be used in future. Parameter 
extraction of MOSFET model for each process technology 
start with an initial set of parameters that comes from, 1) 
Vendor supplied models. 2) Previous MOSFET models. 3) 
Extracted models from physical fundamentals. Interaction 
between parameters that are optimized in a given strategy is 
controlled by the maximum and minimum limit of each 
parameter. There are nine optimization strategies that are 
implemented such as Parameters in Threshold and 
Subthreshold Regions, Threshold Shift effect parameters, 
Threshold Shift and Channel Resistance effects parameters, 
Threshold Shift and Channel Resistance effects Binning 
parameters, Low Bias Drain Saturated Current parameters, 
Low Bias Output Resistance Parameters, High Bias Drain 
Saturated Current parameters, High Bias Output Resistance 
Parameters, and Junction Capacitance Parameters. All of 
strategies presented are a standard optimization strategy and 
it may vary from one technology to the other.[8] 
 

D. Dynamic Feedforward Neural Network 
Dynamic feedforward neural networks are conceived as 
mathematical constructions, independent of any particular 
physical representation or interpretation. This section shows 
how these artificial neural networks can be related to device 
and subcircuit models that involve physical quantities like 
currents and voltages. Feedforward neural networks can, 
under relatively mild conditions, be guaranteed to preserve 
monotonicity in the multidimensional static behaviour. With 
contemporary physical models, it is generally no longer 
possible to guarantee monotonicity, due to the complexity of 
the mathematical analysis needed to prove monotonicity. It 
is an important property, however, because many devices are 
known to have monotonic characteristics. A nonmonotonic 
model for such a device may yield multiple spurious 



Citisia’09 Proc. 2009, Monash University, Sunway Campus Malaysia 
 

 

solutions for the circuit in which it is applied and it may lead 
to nonconvergence even during time domain circuit 
simulation. The monotonicity guarantee for neural networks 
can be maintained for highly nonlinear multidimensional 
behaviour, which so far has not been possible with table 
models without requiring excessive amounts of data. 
Furthermore, the monotonicity guarantee is optional, such 
that nonmonotonic static behaviour can still be modelled. 

 
Figure 2. A dynamic feedforward neural network architecture. 

 
A feedforward neural network will be characterized by the 
number of layers and the number of neurons per layer. 
Layers are counted starting with the input layer as layer 0, 
such that a network with output layer K involves a total of K 
+ 1 layers (which would have been K layers in case one 
prefers not to count the input layer). Layer k by definition 
contains Nk neurons, where k = 0, . . . , K. The number Nk 

may also be referred to as the width of layer k. Neurons that 
are not directly connected to the inputs or outputs of the 
network belong to a so-called hidden layer, of which there 
are K - 1 in a (K + 1)-layer network. Network inputs are 
labeled as x(0) ≡ (x1

(0), . . ., xN0
(0) )T, and network outputs as 

x(K) ≡ (x1
(K), . . ., xN0

(K))T. The neuron output vector yk (y1,k, . . 
., yNk,k)T represents the vector of neuron outputs for layer k, 
containing as its elements the output variable yi;k for each 
individual neuron i in layer k. The network inputs will be 
treated by a dummy neuron layer k = 0, with enforced 
neuron j outputs yj,0 ≡ xj

(0), j = 0, . . ., N0. However, when 
counting the number of neurons in a network, we will not 
take the dummy input neurons into account. The logistic 
function F(sik), is strictly monotonically increasing in sik. 
However, we will generally use nonzero v's and τ's, and will 
instead of the logistic function apply other infinitely smooth 
(C∞) nonlinear modelling functions F. The standard logistic 
function lacks the common transition between highly 
nonlinear and weakly nonlinear behaviour that is typical for 
semiconductor devices and circuits.  
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with δik ≠ 0 
 
Preliminary experience with modeling MOSFET dc 

characteristics indicates that this helps to avoid unacceptable 
local minima in the error function (cost function) for 
optimization-unacceptable in the sense that the results show 
too gradual near-subthreshold transitions [9]. 
 

II. METHODOLOGY 
The Artificial Neural Network method is that used for this 
optimization is called Optimization using Neural Network 
(ONN). The steps of ONN are showed at flow chart figure 3 
below. 

 
Figure 3. Optimization using Neural Network (ONN) 

Flow chart 
 

The process used to fabricate the planar and vertical 
NMOS transistor will be simulated using TCAD Silvaco. It 
is used to create the device structure, adding dopant, 
defining electrodes and creating the mesh. The structure is 
that resulted follow parameter at Table I below. 

After that, the results from the simulation using Silvaco- 
Atlas will get electrical characteristics such as Id-Vd, Id-Vg, 
C-V characteristics graph. In this paper, an only Id-Vd 
characteristic is that optimized. The result data of TCAD 
will be used as comparison data or optimization from ONN 

 
TABEL I 

MOSFET DEVICE PARAMETER 
Parameter Value 

Type 
Body doping of Boron 

Polysilicon doping of Arsenic 
Channel length (Lg) 

Oxide thickness (Tox) 

n-MOSFET 
9.1017 cm-3

 

1.1015
 cm-3

 

150 nm 
5 nm 

 
method. The other hand, the electrical characteristics of 
MOSFET can be obtained from SPICE. The ONN can be 
trained using such data to produce fast and accurate DC 
neuromodels. For this work, the training samples are 
collected by T-SPICE simulations using BSIM3 according 
to 1.3 µm technology. The n MOSFET length and width are 
1.5 µm and 3 µm respectively. The device is fully 
characterized from gathered data with Vg is 1.1, 2.2 and 3.3 
V, and Vd ranging from 0 to 3.3V. The I-V characteristic 
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simulations were taken for the drain current Id. The each Id-
Vd graph has physics value parameters, such as threshold 
voltage (VTHO), the drain induced barrier lowering 
(PDIBLC), L dependent coefficient of the DIBL effect in 
output resistance (DROUT), Gate dependence of early 
voltage (PVAG), channel length modulation (PCLM), and 
Drain saturation voltage (VSAT) parameters. If the 
parameters change then the graph will change according to 
what changed parameter. The parameter is called as data 
target. The pair of Id-Vd graph and physics parameter as 
ONN input and output respectively is showed at Figure 4 
below. 

 
 

Figure 4. Input-Target Data of the ONN method 
 

TABLE II 
ARTIFICIAL NEURAL NETWORK PARAMETER 
Parameter Value 

Network Type 
Training Function 

Adaption Training Function 
Error Function 

Input Transfer Fuction 
Hidden Transfer Function 
Output Transfer Function 

Feed-Forward Backpropagation 
Trainlm 

Learngdm 
Mean Square Error 

Tansig 
Tansig 
Purelin 

 
More and more various pairs of input-target are more and 
better. The training sets were that used follow the table II 
above. Series of neural networks with different numbers of 
hidden neurons are trained using Levenberg Marquardt 
(trainlm) algorithm. The feed forward with various 
architectures was found to provide the best trade-off 
between the desired accuracy and the model complexity. 
 

III. RESULT 
The MOSFET device simulation using TCAD have gotten 

electrical parameter result that can be shown at table III 
below. This parameter is obtained with planar n-MOSFET 
process parameter of substrate concentration, 9.10-17 cm-3, 
source and drain doping concentration, 1.10-15 cm-3, channel 
length (Lg), 150 nm and oxide thickness (tox), 5 nm. 

 
 

TABEL III 
ELECTRIC PERFORMANCE RESULT OF MOSFET 

Parameter Value 
Threshold Voltage (Vth) 
Leakage Current (Ioff) 

Drive Current (Ion) 
DIBL 

Subthreshold Slope (S) 

0.77 V 
1.36.10-15

 (A/um) 
8.06.10-7

 (A/um) 
44 (mV/V) 

82 (mV/decade) 
 

With the MOSFET structure, the electric characteristic is 
used by SPICE model for optimizing process. Before and 
after Optimizing using Neural Network process of Id-Vd 
graphs can be described at figure 5 below. 
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Figure 5. Optimization method using Artificial Neural Network 

 
The ONN method used Neural Network process with its 

parameters was declared at table II. In this network type, it 
used the feed-forward backpropagation method because this 
method had the monotonicity guarantee for neural networks 
that could be maintained for input and target nonlinear 
multidimensional data, which so far had not been possible 
with table models without requiring excessive amounts of 
data. And also this method can avoid convergence problems, 
because it avoids the need for an iterative solver. The graph 
error can be shown at figure 6 below. 

 
Figure 6. Training Performance of ONN process 

 
The stability of feedforward neural networks can be 

guaranteed. The stability of feedforward neural networks 
depends solely on the stability of its individual neurons. If 
all neurons are stable, then the feedforward network is also 
stable. For training process with various the network 
architectures, graphs of error training showed Mean Square 
Error (MSE) result that more and more reduce for all 
architectures.  

The training Mean Squared Errors (MSEs) of all 
architectures are below of 1e-25 that was obtained after 5-6 
iterations. The best result is at Neural Network architecture 
of 36-30-10-5 with Mean Square Error (MSE) of 1e-28 at 
epoch of 5. 

IV. CONCLUSION 
An alternative optimization method for optimize electric 

characterization graph of MOSFET between MOSFET 
model and measured/simulation using Neural Network was 
proposed. The conventional optimization method is trial and 
error method so that it need more time to achieve optimizing 
result. The Optimization using Neural Network (ONN) has 
few steps and small error to obtained desire result. In this 
paper, the neural network method is dynamic feedforward 

Optimize 

Using ONN 
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Neural Network. After NN training, the best result is at 
Neural Network architecture of 36-30-10-5 with Mean 
Squared Error (MSE) of 1e-28 at epoch of 5.  
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