

BAB III METODE PENELITIAN

Penelitian ini menggunakan metode kuantitatif sebagai standar utama. Peraturan ini digunakan untuk mengukur tingkat kelayakan aksesibilitas bangunan publik. Fokus penelitian ini adalah pada bangunan rawat inap di RSUD MOH Shaleh, dengan tujuan untuk menilai seberapa baik fasilitas tersebut memenuhi standar yang telah ditetapkan.

Langkah-langkah dalam penelitian ini meliputi berbagai tahapan. Tahapan pertama adalah pengumpulan data yang relevan dengan aksesibilitas bangunan. Selanjutnya, data tersebut dianalisis berdasarkan kriteria yang tercantum dalam Permen PU. Hasil analisis kemudian digunakan untuk menentukan tingkat kelayakan aksesibilitas bangunan rawat inap di RSUD MOH Shaleh.

3.1 Perumusan Tabel

Langkah awal yang ditempuh ialah membuat tabel yang berfungsi sebagai alat ukur untuk mengevaluasi aksesibilitas yang ada pada Gedung rawat inap RSUD Moh Shaleh/ Seperti yang dinyatakan dalam Persyaratan Teknis Aksesibilitas 2.4, tabel yang disusun akan menggunakan berbagai kriteria yang digunakan. Di Gedung rawat inap RSUD Moh Shaleh sendiri, terdapat empat jenis aksesibilitas yang digunakan, yaitu Ramp, Lift, Toilet & Tangga.

3.1.1 Ramp

Tabel Ramp ini menjelaskan standart yang digunakan pada Permen PU Nomor: 30/PRT/M/2006 yang meliputi derajat kemiringan, Panjang, pencahayaan, kelengkapan handrail, serta permukaan material.

Variabel	Sub Variabel	Deskripsi
Ramp	Derajat kemiringan	Maksimum 6° (luar bangunan)
	Panjang ramp	Maksimal 900 cm (7°),<7° boleh lebih dari 900 cm
	Lebar ramp	Minimum 95 cm tanpa tepi pengaman
		Minimum 120 cm dengan tepi pengaman
	Permukaan datar / bordes	Bebas dan datar dengan ukuran minimal 160 cm
		Harus bertekstur
	Tepi pengaman	Lebar 10 cm
	Pencahayaan	Pencahayaan yang cukup
	Handrail	Ketinggian 65-80 cm

3.1.2 Lift

Lift adalah sebuah perangkat mekanis dan elektrik untuk membantu pergerakan vertikal di dalam bangunan. Alat ini tidak hanya dirancang untuk memudahkan askes disabilitas, tetapi juga dapat berfungsi sebagai lift barang.

Dengan demikian, lift memainkan peran penting dalam mendukung mobilitas dan transportasi vertikal baik untuk orang maupun barang di dalam Gedung

Variable	Sub Variabel	Deskripsi
	Jumlah minimal lift	minimal 1 (satu) buah lift
	Perbedaan Muka Lantai	Maksimum berukuran 1,25
		cm.
Lift	Koridor / lobby pada	Minimal lebar ruangan 185
	lift	cm
	Ruang pada lift	minimal 140 cm x 140 cm
	Pintu pada lift	waktu minimum bagi pintu
		lift ttetap erbuka adalah 3
		detik

3.1.3 Toilet

Toilet diproritaskan untuk fasilitas sanitasi yang dapat diakses oleh semua orang yang berada di bangunan atau fasilitas tersebut. Ruang gerak, ketinggian kloset, pegangan rambut, bahan lantai, dan pintu semuanya termasuk dalam kategori ini.

Variabel	Sub	Deskripsi
	Variabel	
Toilet	Ruang	ruang gerak
	gerak	yang cukup
	Ketinggian	45-50 cm
	Kloset	
	Pegangan	Handrail
	rambat	
	Bahan	Tidak Licin
	Lantai	
	Pintu	Mudah

3.1.4 Tangga

Tangga merupakan suatu fasilitas yang dirancang khusus untuk memfasilitasi pergerakan vertikal, dengan mempertimbangkan berbagai faktor seperti ukuran, kemiringan anak tangga, serta tanjakan. Tangga juga didesain dengan lebar yang memadai untuk memastikan akses yang nyaman dan aman bagi penggunanya. Dengan perencanaan yang cermat, tangga dapat menjadi salah satu elemen penting dalam struktur bangunan yang memungkinkan orang untuk berpindah antar lantai dengan efisien dan aman.

Variabel	Sub Variabel	Deskripsi
	Dimensi anak tangga	Ukuran seragam Tinggi pijakan 15-19 cm Lebar pijakan 27-30 cm
	Tekstur permukaan	Tidak berlubang/rusak
	Kemiringan	Maksimum 60°
Tangga		Minimum salah satu sisi
		Ketinggian 65-80 m
	Handrail	Bagian ujungnya harus bulat atau dibelokkan ke arah lantai,dinding, atau tiang
		Handrail harus ditambah 30cm pada bagian ujungnya (puncak dan bagian bawah)
	Nosing	Lebar maksimal 4 cm