The Effect of BaCO3 Compound Changes on the Formation of Magnetic Material BaFe12O19 by Agus Subagio Submission date: 19-Nov-2019 06:07PM (UTC+0700) **Submission ID:** 1217050522 File name: ound_Changes_on_the_Formation_of_Magnetic_Material_BaFe12O19.pdf (586.99K) Word count: 2084 Character count: 12595 Journal homepage: http://ejournal.undip.ac.id/index.php/sm ### The Effect of BaCO₃ Compound Changes on the Formation of Magnetic Material BaFe₁₂O₁₉ Priyono, Agung Cahyono, Indras Marhaendrajaya, Agus Subagiyo, Gunawan S. Kadarisman Jurusan Fisika, Fakultas Sains dan Matematika, Universitas Diponegoro, Semarang E-mail: priyono@undip.ac.id #### ABSTRACT BaFe₁₂O₁₉ is a permanent magnetic material which has superior properties to be excellent until the late of twentieth century. Some of the obstacles in the synthesis of the material using a stoichiometric composition is a difficulty to obtain a single phase and the second phase is always found. This research attempted to make modifications on the initial non-stoichiometric composition by varying the fraction of Ba/Fe through BaCO₃ and Fe₂O₃ compound through solid state reaction mechanism. This solid state reaction was initiated by mixing various fractions of BaCO₃ and Fe₂O₃ powder composition and compacted to produce a homogeneous mixture using a planetary milling. After drying and molding, it was obtained a homogeneous mixture like a cylinder with a diameter of 2:54 cm and a thickness of 0.5 cm. The BaFe₁₂O₁₉ phase was obtained by heating the sample at a temperature of 1200 ° C for 4 hours. To determine changes in the fraction of Ba/Fe before and after sintering, the samples were tested by X-Ray Fluorescence (XRF), while the structure and crystallinity were tested by X-ray diffraction (XRD) and Scanning Electron Microscope (SEM). The results showed that during the heating process, the reduction of barium fractions exceeded 5% from of their initial weight, while changes in the fraction of Fe was not significant. The results of structure and crystallinity measurement showed that the addition a substantial amount of barium carbonate can lead to the decrease of crystallinity from 35.271 nm to 11.265 nm. #### ABSTRAK BaFe₁₂O₁₉ merupakan material magnetik permanen yang memiliki sifat sifat unggul sehingga menjadi primadona hingga akhir abad dua puluh. Beberapa kendala dalam sintesis material menggunakan komposisi stoikiometri sulit diperoleh satu fasa dan selalu ditemukan fasa kedua. Penelitian ini mencoba melakukan modifikasi komposisi awal non stoikiometri dengan memvariasi fraksi Ba dengan Fe melalui senyawa BaCO₃ dan Fe2O₃ melalui mekanisme reaksi pemaduan padat. Reaksi ini dimulai dengan mencampurkan berbagai fraksi komposisi serbuk BaCO₃ dan Fe₂O₃ dan aquades untuk mengasilkan campuran homogen menggunakan planetary milling. Setelah dilakukan pengeringan dan pencetakan diperoleh paduan homogen berbentuk silinder dengan diameter 2.54 cm dan ketebalan 0,5 cm. Fasa BaFe₁₂O₁₉ diperoleh dengan memanaskan sampel pada temperatur 1200°C selama 4 jam. Untuk mengetahui perubahan perbandingan fraksi Ba/Fe sebelum dan sesudah sintering sampel diuji dengan X-Ray Fluorescence (XRF), sedangkan struktur dan kristalinitas diuji dengan difraksi X (XRD) dan Scanning Electron Microscope(SEM). Hasil pengujian menunjukkan bahwa selama proses pemanasan terjadi pengurangan fraksi barium hingga melebihi 5 % berat awal sedangkan perubahan fraksi ion Fe tidak cukup signifikan. Hasil pengujian struktur dan kristalinitas sampel diketahui bahwa penambahan barium carbonat yang banyak dapat menyebabkan kristalinitas sampel menurun dari 35,271 nm menjadi 11,265 nm. Journal homepage: http://ejournal.undip.ac.id/index.php/sm #### Pendahuluan BaFe₁₂O₁₉ merupakan salah satu magnet keramik yang secara umum memiliki fasa MFe₁₂O₁₉ dan dibentuk dari senyawa oksida alkali dari atom divalen golongan IIA, seperti Mg, Ca, Ba, Sr dan Pb sebagai pengganti unsur M. Sehingga fasa ini lebih dikenal dengan material magnetic hexaferrite tipe M. Berbagai keunggulan yang dimiliki material magnetik BaFe₁₂O₁₉ adalah sangat ekonomis dan memiliki kestabilan yang tinggi terhadap pengaruh medan magnet luar serta temperatur, sehingga mulai tahun 1950 hingga akhir abad 20-an menjadi primadona magnet permanen golongan sedang [1]. Beberapa peneliti mengembangkan sintesis senyawa M hexagerrite dengan berbagai metode dengan tujuan untuk mendapatkan sifat yang terbaik dalam komposisi dan unggul dalam aplikasi. Barium hexaferrite dengan senyawa kimia BaFe₁₂O₁₉ banyak digunakan sebagai device elektronik, media penyimpan data maupun sebagai piranti pada perangkat *microwave* [2-4]. Gambar 1 adalah diagram fasa pembentukan material magnet hexaferrite dengan empat tipe M, W, Y, Z sesuai dengan komposisinya [5]. Gambar 1. Diagram biner komposisi pembentukan Barium ferrite. Dalam berbagai komposisi untuk membentuk struktur hexaferrite. Dari beberapa penelitian yang telah dilakukan, pembentukan fasa tunggal BaFe₁₂O₁₉ tidak mudah walaupun komposisi dari senyawa BaCO₃ dan Fe₂O₃ dengan perbandingan yang sudah stoikiometri. Fasa fasa ikutan dalam jumlah minor seperi BaFe₂O₄, BaO dan Fe_2O_3 sering masih ditemukan dalam hasil sintesis. Berbagai metoda telah diterapkan seperti, metalurgi serbuk [6], plasma arch [7], maupun presipitasi solgel [8]. Dari berbagai kajian yang telah dilakukan menujukkan bahwa metoda metalurgi serbuk lebih efektif untuk menghasilkan produksi dalam skala yang lebih besar. Meskipun demikian berbagai kendala yang terjadi dalam metoda ini adalah terbentuknya fasa ikutan disebabkan oleh mekanisme reaksi selama pembentukan. Hal ini dapat menggangu sifat sifat magnet unggul yang diharapkan. Dalam penelitian ini dilakukan proses pembentukan fasa BaFe₁₂O₁₉ melalui mekanisme pemaduan padat yang didasari pada metoda mekanika milling energy tinggi. #### Metode Penelitian Proses pembentukan senyawa BaFe₁₂O₁₉ diawali dengan penggabungan senyawa dasar BaCO₃ dan Fe₂O₃ dengan tiga komposisi pembentukan. Komposisi pertama adalah dengan mengurangkan senyawa BaCO₃ sebanyak 20 % berat dari kondisi stoikiometri, sedangkan senyawa ketiga adalah dengan menambahkan senyawa yang sama sebanyak 10% berat terhadap konsisi stoikiometri. Ketiga senyawa dilakukan proses percampuran dan penghalusan menggunakan *planetary ball mill* energi tinggi dengan kecepatan 300 rpm selama 2 jam. Paduan yang telah terbentuk selanjutnya dikompaksi 2 Ton pada alat cetak sehingga menghasilkan sampel dengan ukuiran 2,54 cm dan ketebalan 0,5 cm dan dilakukan proses kalsinansi dan sintering pada temperatur 1200 C selama 4 jam. Sebelum dilakukan proses kalsinasi hasil campuran terlebih dahulu dilakukan pengujian dengan menggunakan *X-ray flourecence* dan dilakukan juga setelah proses kalsinasi dengan tujuan untuk menentukan komposisi yang hilang selama proses pemanasan. Hasil sintering dan kalsinasi diharapkan terbentuk reaksi yang dikehendaki dan senyawa CO₂ sebagai gas residu seperti ditunjukkan dalam reaksi berikut $$BaCO_{3(s)} + 6Fe_2O_{3(s)} \rightarrow BaFe_{12}O_{19(s)} + CO_{2(g)}$$ Struktur kristal fasa pembentukan diuji dengan X-ray difraksi dan dilakukan verifikasi menggunakan data standard ICCDD sehingga fasa utama dan fasa minor Journal homepage: http://ejournal.undip.ac.id/index.php/sm dapat diidentifikasi. Hasil sintesis juga dilakukan pengujian fotomicro menggunakan kamera scanning Elektron Microscope dengan perbesaran hingga 2000 kali untuk melihat homogenitas dan morfologi permukaan sampel. #### Hasil dan Pembahasan Tabel 1 merupakan perbandingan hasil komposisi sebelum dan sesudah sintesis pembentukan BaFe₁₂O₁₉ dari berbagai komposisi perubahan fraksi berat BaCO₃. Pada komposisi P₁ merupakan komposisi stoikiometri dari perbandingan fraksi BaCo₃ dengan Fe₂O₃ sedangkan P₂ adalah komposisi dengan pengurangan BaCO3 sebesar 20% dan P3 pada komposisi dengan kelebihan 20%. Pada P₁, P₂ dan P₃ terlihat bahwa fraksi Ba menurun hamper 1% - 2% terhadap fraksi berat sedangkan Fe hampir tidak terjadi. Hal ini menandakan bahwa selama reaksi pembentukan BaFe₁₂O₁₉ selalu diikuti dengan hilangnya atom-atom Ba. Kehilangan atom Ba dimungkinkan karena selama proses terbentuknya fasa BaFe₁₂O₁₉ didahului dengan pembentukan fasa intermediate BaFe₂O₄ yang memiliki titik penguapan yang rendah. **Tabel 1.** Perbandingan fraksi atom perhitungan teoritis dan hasil XRF | Sebelum proses | | Hasil setelah | | |----------------|--------------|--|--| | sintering | | proses | | | | | sintering | | | Ba | Fe (%) | Ba | Fe | | (%) | | (%) | (%) | | 14,27 | 60,025 | 12,78 | 59,96 | | | | | | | 9,22 | 63,53 | 8,26 | 63,49 | | 16,22 | 58,64 | 14,52 | 58,59 | | | | | | | | Ba (%) 14,27 | sintering Ba Fe (%) (%) 14,27 60,025 9,22 63,53 | sintering pro sinte Ba Fe (%) Ba (%) 14,27 60,025 12,78 9,22 63,53 8,26 | Gambar 2 adalah pola difraksi x (XRD) BaFe₁₂O₁₉ dengan komposisi stoikiometri. Pola difarkasi X-ray dengan Menggunakan sumber anoda Co (K_{α} dengan λ =1.7889 A). Hasil identifikasi fasa BaFe₁₂O₁₉ sesuai dengan data ICDD/JCPDF 44-0897 [9]. Gambar 2. Pola difraksi X sampel dengan komposisi stoikiometri dengan temperatur kalsinasi 1200°C selama 4 jam Dalam pembentukan fasa stoikiometri P₁ masih ditemukan fasa Fe₂O₃ dengan fraksi yang relatif kecil, sedangkan kekurangan atom Ba dalam komposisi pembentukan non stoikiometri P₂ yang ditunjukkan dalam pola difraksi X gambar 2 juga memunculkan fasa Fe₂O₃ dengan fraksi yang lebih besar. Hal ini memperjelas indikasi bahwa selama proses kalsinansi dan sintering sebagian atom Ba yang hilang sehingga kekurangan atom Ba untuk membentuk fasa tunggal BaFe₁₂O₁₉. Dari kedua hal ini menandakan bahwa untuk membentuk fasa tunggal harus diikuti dengan melebihkan senyawa $BaCO_3$ untuk menambahkan senyawa Fe_2O_3 yang hilang selama proses kalsinasi. Gambar 3 adalah Pola difraksi X sampel dengan pengurangan 20% fraksi berat $BaCO_3$ terhadap komposisi. Dari hasil identifikasi terlihat ada tiga fasa dalam pembentukan dalam fraksi komposisi 20% kelebihan atom Ba. Fasa BaFe12O19 mendominasi dalam struktur kristal dan diikuti denga fasa BaO dan BaFe2O4 sebagai fasa kedua dan ketiga. Fasa kedua memiliki kondisi lebih stabil dibandingkan dengan fasa ketiga. ISSN: 0854-0675 Jurnal Sains dan Matematika Vol. 23 (4): 116-120 (2015) Journal homepage: http://ejournal.undip.ac.id/index.php/sm Gambar 3. Pola difraksi X sampel dengan pengurangan 20% fraksi berat BaCO₃ terhadap komposisi stoikiometri dan temperatur kalsinasi 1200°C selama 4 jam Pengurangan senyawa $BaCO_3$ hingga 20% berat (P_2) dalam pembentukan $BaFe_{12}O_{19}$ yang ditunjukkan dalam gambar 2 tidak memberi pengaruh pada kristalinitas dan sangat mirip dengan pola komposisi stoikiometri. Hal ini dapat dibuktikan dengan hasil kajian ukuran butir kristal menggunakan metoda scherer's [10] dan diperoleh sebesar 35,271 nm untuk komposisi stoikiometri (P_1) dan 38.342 nm untuk komposisi P_2 . Gambar 3. Pola difraksi X sampel dengan Kelebihan 20% fraksi berat BaCO3 terhadap komposisi stoikiometri dan temperatur kalsinasi 1200°C selama 4 jam Pengukuran kristalinitas belum merepresentasikan interaksi microstrains pada kristal. Kondisi ini tidak sama dengan hasil kristalinitas pada penambahan BaCO₃ sebesar 20% yang meiliki kristalinitas yang lebih rendah hingga 11,265 nm. Dari ketiga komposisi ini dapat diketahui bahwa kehadiran BaCO₃ yang berlebihan dapat memberi pengaruh pada menuruinnya kritalinitas BaFe₁₂O₁₉, Disamping itu kehadiran senyawa ini juga akan berpengaruh pada kehadiran fasa fasa ikutan. Gambar 4 merupakan perbedaan morfologi permukaan pada komposisi stoikiometri dan komposisi dengan kelebihan fraksi berat 20 % senyawa BaCO₃. Gambar 4. Strukyut permukaan sampel Stoikiometri (a) dan Kelebihan 20% fraksi berat BaCO₃ (b) pada temperatur kalsinasi 1200°C selama 4 jam Dari kedua gambar 4 tersebut nampak perbedaan yang cukup dominan dengan struktur batas butir pada gambar a lebih jelas dari gambar b. Hal ini menandakan bahwa pembentukan fasa $BaFe_{12}O_{19}$ dengan komposisi stoikiometeri atau lebih sempurna dibandingkan dengan non stoikiometri. Kedua kasusu ini dapat memberi gambaran bahwa kelebihan senyawa $BaCO_3$ sangat berdampak pada pembentukan kristalinitas. Journal homepage: http://ejournal.undip.ac.id/index.php/sm #### Kesimpulan Hasil pembentukan fasa BaFe₁₂O₁₉ melalui sintesis non stoikiometeri dengan memfariasi senyawa BaCO₃ diperoleh kesimpulan sebagai berikut - Selama proses pemanasan terjadi perubahan perbandingan fraksi Ba/Fe dengan keberadaan ion barium lebih rendah dibandingkan dengan ion Besi (Fe). - Kekurangan senyawa BaCO₃ dalam pembentukan BaFe₁₂O₁₉ tidak memberikan dampak perubahan kristalinitas yang signifikan terhadap fasa stoikiometeri, tetapi kelebihan senyawa BaCO₃ akan menurunkan kristalinitas pembentukan - Hasil pengukuran kristalinitas diperoleh bahwa pada perbandingan senyawa stoikiometri memiliki ukuran 35,271 nm sedangkan pada kekuranan 20% BaCO₃ kristalinitas sebesar 38,342 sedangkan pada kelebihan 20% BaCO₃ menurunkan kristalinitas hingga 11,265 nm. #### Daftar Pustaka - [1] Nowosielski, R., Babilas, R., Dercz, G., Pająk, L. and Wrona, J., (2007), Structure and properties of barium ferrite powders prepared by milling and annealing, Archives of Materials Science and Engineering, 28 12 735-742. - [2] Zhang, H.-W., Li, J., Su, H., Zhou, T.-C., Long, Y. and Zheng, Z.-L., (2013), Development and application of ferrite materials for low temperature co-fired ceramic technology, *Chinese Physics B*, 22 11 117504. - [3] Fal, T.J. and Camley, R.E., (2008), Hexagonal ferrites for use in microwave notch filters and phase shifters, *Journal of Applied Physics*, 104 2 023910. - [4] Meshram, M.R., Agrawal, N.K., Sinha, B. and Misra, P.S., (2004), Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber, *Journal of Magnetism and Magnetic Materials*, 271 2–3 207-214. - [5] Smit, J. and Wijn, H.P.J., (1959), Ferrites: Physical Properties of Ferrimagnetic Oxides in Relation to Their Technical Applications, N.V. Philips Gloeilampenfabrieken. - [6] Ding, J., Miao, W.F., McCormick, P.G. and Street, R., (1998), High-coercivity ferrite magnets prepared by mechanical alloying, *Journal of Alloys and Compounds*, 281 1 32-36. - [7] Ovtar, S., Le Gallet, S., Minier, L., Millot, N. and Lisjak, D., (2014), Control of barium ferrite decomposition during spark plasma sintering: Towards nanostructured samples with anisotropic magnetic properties, *Journal of the European Ceramic Society*, 34 2 337-346. - [8] Paimozd, E., Ghasemi, A., Jafari, A. and Sheikh, H., (2008), Influence of acid catalysts on the structural and magnetic properties of nanocrystalline barium ferrite prepared by solgel method, *Journal of Magnetism and Magnetic Materials*, 320 23 L137-L140. - [9] Wong-Ng, W. and Hubbard, C.R., (1987), Standard Reference Materials For X-Ray Diffraction Part II. Calibration Using d-Spacing Standards, Powder Diffraction, 2 04 242-248. ## The Effect of BaCO3 Compound Changes on the Formation of Magnetic Material BaFe12O19 **ORIGINALITY REPORT** 0% 0% 0% 0% SIMILARITY INDEX **INTERNET SOURCES** **PUBLICATIONS** STUDENT PAPERS **PRIMARY SOURCES** Exclude quotes Off Exclude matches Off Exclude bibliography Off ## The Effect of BaCO3 Compound Changes on the Formation of Magnetic Material BaFe12O19 | GRADEMARK REPORT | | |------------------|------------------| | FINAL GRADE | GENERAL COMMENTS | | /0 | Instructor | | , | | | | | | PAGE 1 | | | PAGE 2 | | | PAGE 3 | | | PAGE 4 | | | PAGE 5 | |