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ABSTRACT

The deposition of InGaN thin films by plasma-assisted metalorganic chemical vapor deposition is achieved using nitrogen plasma as a nitrogen
source. The generation of nitrogen plasma is optimized using optical emission spectroscopy, and the plasma is dominated by excited molecular
nitrogen, which emits in the range 300-420 nm. The emission intensity of the plasma significantly depends on the flow rate of nitrogen gas
and heater temperature and are optimally 70 SCCM and 650 °C, respectively. A further increase in these parameters results in a decrease in
the intensity of the nitrogen plasma emission. An optimal flow rate and heater temperature are to grow InGaN thin films on c-sapphire
substrates. InGaN thin films grown with a TMIn vapor concentration (x,) of 0%, 50%, and 100% at a growth temperature of 650 ° C are highly
oriented to the (0002) plane in a hexagonal structure. The film grown with a vapor concentration of 50% has an indium concentration of 55%
and no indication of phase separation. Increasing the growth temperature above 650 °C results in a decrease in the growth rate.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). hittps://dotorg/10.1063/1.5126943

I. INTRODUCTION

The growth of GaN and its alloys @metalorganic chemical
vapor deposition (MOCVD) is challenging because the molecular
nitrogen used as a nitrogen source is inert at normal growth tem-
peratures. Active nitrogen species are required to react with gal-
lium, and to create them, two approaches are commonly employed:
using ammonia as the nitrogen source because it dissociates freely at
high temperatures and using nitrogen plasma, which, by definition,
contains reactive nitrogen species.

Growth of InGaN thin films by MOCVD is also challenging if
a high concentration of indium is required in ternary alloys. The
high concentration of indium is difficult to achieve due to its high
volatility at high growth temperatures. ' Furthermore, the crys-
talline quality of the InGaN film is poorer compared with that of
the GaN film. A large compositional in-homogen and phase
separation are frequently present in the InGaN film due to a large

difference in either the lattice constants or the equilibrium vapor
pressure of rgogen between the binaries GaN and InN. " In
addition, the large difference in the interatomic spacing between
GaN and InN (~11%) can give rise to a solid-phase miscibility
£ap-

The growth of high-quality InGaN films at high temperatures
is problematic because the InN component becomes unstable. The
In-N bond is weak compared with the Ga-N bond and is easily
broken at high temperatures, leading to poor indium incorpora-
tio the film."" To enhance indium incorporation, a high par-
tial pressure of nitrogen is needed to suppress the dissociation of
InGaN during epitaxial growth. " Alternatively, the growth tempera-
ture may be reduced, requiring the nitrogen source to be more active.
To reduce the growth temperature and to activate the nitrogen
source, plasma-assisted growth may beemployed. To generate nitro-
gen plasma, a plasma generator using radio waves or microwaves
may be employed. Both types of plasma generators produce reactive
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nitrogen species, such as excited%ecular, ionic, and atomic nitro-
gen species, together with free electrons.”'

To determine thff@pes of reactive species produced by nitro-
gen plasma, methods such as optical emission spectroscopy (OES),
time-of-flight mass spectroscopy, laser-induced fluorescence spec-
troscopy, and the Langmuir probe method are emplo}'ed.:' !
Among species-detection methods, the OES method has several
advantages: it is simple, has high resolution, and is highly capa-
ble of characterizing the reaction process inside the reactor without
affecting the plasma.” "

Understanding thefl¥@chanism involved in nitrogen plasma
generation to optimize it for the growth of InGaN thin films is essen-
tial. To date, several investigations of nitrogen plasma using OES
have focused on the identification of the active specie duced by
several plasma generator sources and on the growth of group III-
nitrides using RF-plasma-assisted MBE growth. Since MBE growth
requires high vacuum, the use of nitrogen to generate reactive nitro-
gen species most often involves low flow rates of nitrogen gas,
typically around 1 SCCM-5 SCCM.

It has been established that the species types of reactive nitro-
gen produced by nitrogen plasma depend significantly on pressure.
In the case of MOCVD growth of group Ill-nitrides, to produce
good quality films, growth most often uses a very high V/III ratio.
Consequently, the flow rate of nitrogen here is much higher than
that commonly used in RF-plasma-assisted MBE. The higher nitro-
gen flow rates lead to much higher pressure inside the MOCVD
reactor. The characteristics of nitrogen plasma produced at high
nitrogen flow rates are rtant for a better understanding of
plasma-assisted MOCVD growth of group I1I-nitrides. In this paper,
we report the optimization of parameters for generating nitro-
gen plasma by investigation of its optical emission. The nitrogen
plasma is then used to grow InGaN thin films by plasma-assisted
MOCVD. We investigate the growth characteristics of InGaN for
various flow rates of nitrogen gas, growth temperatures, and indium
compositions.

Il. EXPERIMENTAL DETAILS
A. Optical emission spectroscopy (OES)

Nitrogen plasma was generated inside a plasma-assisted
MOCWV. actor. The reactor is equipped with a downstream cav-
ity type 245 GHz ECR plasma source with a maximum power of
250 W (ASTeX) and is connected to a vacuum system consisting
of a rotary vane pump (Balzers, DUO 030A) and a root blower
pump (Balzers, WKP 250A). The reactor is also equipped with a
2-in. resistive heater that is electronically controlled using a PID
temperature controller and is used to heat the substrates and gases
inside the reactor. A high purity (£l§99%) of nitrogen gas was used
to produce the nitrogen plasma. Emission spectra of the nitrogen
plasma were analyzed using OES. Light from the plasma inside the
reactor is focused on a UV fiber optic and transmitted directly to
a monochromator with a low-resolution grating. 'mmonochro—
mator is equipped with a photomultiplier detector to improve the
signal-to-noise ratio; lock-in detection was used as the data acquisi-
tion method. The spectral response of the monochromator/detector
was calibrated using a halogen lamp. To optimize plasnmnera tion
parameters, the experiment was performed varying the nitrogen gas

flow rate and heater tempe re. The flow rate was varied between
60 SCCM and 130 SCCM, while the heater temperature was varied
between 500 °C and 700 °C.

B. Plasmagisted MOCVD growth of InGaN

InGaN thin films were grown on (0001) sapphire substrates
using optimized parameters for nitrogen-plasma generation as
growth @met& rs. Trimethylgallium (TMGa) and trimethylindium
(TMIn) were used as sources of gallium and 'ern, respectively,
and synthesized reactive nitrogen species were used as a nitrogen
source. Hydrogen gas was used as a carrier ga@riﬁed by pass-
ing it through a heated palladium cell. Before the growth of the
InGaN films, the (0001) sapphire substrates were cleaned chemi-
cally by rinsing with acetone and methanol in an ultrasonic bath.
Substrates were subsequently washed with deionized water (DI-
water) and then etched in a solution of DI-water:H;PO4:H:S0,
= 1:1:3 at 70 °C for 10 min. Finally, the substrates were placed under
running deionized water and then dried using a nitrogen jet. The
substrates were immediately loaded into the reactor and heated to
@DC for thermal cleaning in ambient H,. In situ hydrogen plasma

eaning of bstrates was carried out for 10 min using 200 W
plasma power with a H; flow rate of 50 SCCM, followed e
deposition of a GaN buffer layer. This layer was grown wi
TMGa flow rate of 0.12 SCCM and an N flow rate of 90 SCCM at
500 ° thich produced a GaN buffer layer of about 25-nm thick-
ness. After deposition of the buffer layer, the substrate temperature
was raised to the required growth temperatures. The total flow rate
of the group-III precursor was kept at 0.12 SCCM for all deposi-
tions, while the TMIn vapor composition was thus varied: 0%, 50%,
and 100%.

The grown InGaN, GaN, and InN films were characterized by
x-ray diffractometry (XRD) with monochromatic Cu Ka radjati(?
(A = 15406 A) to identify the crystal phase and its orientation.
scanning electron microscope (SEM) was used t€Bxamine the films’
cross sections to estimate the film thickness. An energy dispersive x-
ray spectrometer (EDS) was used to identify the atomic composition
of the thin films.

Ill. RESULTS AND DISCUSSION
A. OES measurement

L:he reactive nitrogen species that may exist in nitrogen plasma
are exated neutral molecular nitrogen, atomic nitrogen, and ionized
nitrogen, and the species type is determined using optical emission
spectra. ission from nitrogen plasma appears whitish-violet to
the eye. Figure 1 shows typical emission spectra of nitrogen p]aul
generated by using the ECR plasma source of 200 W at 650 “C with
a nitrogen flow rate of 70 SCCM. The spectra are characterized by
four emission peaks in the range of 300 nm-420 nm that corre-
spond to the excited states of neutral N>™ molecules in the second
positive system with the C°II, — 33H5 energy level transition."
Figure 1 also shows a lack of peaks in the band of ionic nitro-
gen and atomic nitrogen, which usually emit at 390-430 nm and
540-820 nm, respectively.

The observed spectra are different from the spectra typically
found by other researchers. The spectra of nitrogen plasma gen-
erated by an ECR microwave plasma source usually include a mix
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FIG. 1. Typical spectra of al emission of nitrogen plasma generated by the
ECR plasma source with a power of 200 W and a heater temperature of 650 °C.
The spectra are dominated by excited states of neutral N; * molecules in the sec-
ond positive system with the C*I1, — B*I1, energy level transition. Note that Av

is the vibrational quantum number difference between two exciled levels, C*I,
and B7I1,.

of excited states of nitrogen molecules, ionic nitrogen, and atomic
nitrogen. We believe that the absence of ionic nitrogen and atomic
nitrogen bands in the observed spectra is related to the relatively
high pressure inside the MOCVD reactor. Pressure affects the type
of species of generated nitrogen plasma, as reported by Boivin et al'”’
They showed that the line intensity of atomic and ionic nitrogen
emission is greatly reduced for pressures higher than 10 mTorr. This
pressure is far below the working pressures of the MOCVD reac-
tor used in this study, which are in the range 400-700 mTorr for
nitrogen flow rates of 60-120 SCCM.

During the growth process, a reaction between gallium and/or
indium precursors with reactive nitrogen species occurs if the reac-
tive nitrogen species have the requisite energy for the §rowth of
InGaN. Th ited neutral molecular nitrogen {A32u+, Bl all'Ig,
and C’I1,), ionized molecular nitrogen {225+), and atomic nitrogen
(*S,*P, and *D) have energies that are sufficient to form group III-
nitrides.” To grow high quality group IlI-nitrides and their alloys
using plasma-assisted MOCVD, the creation of N," ions is avoided
because they are highly energetic and are likely to damage the sur-
face of films. Therefore, in terms of the energy of reactive nitro-
gen species, the growth of thin group IIl-nitride films using plasma
nitrogen that is dominated by excited neutral molecular nitrogen
(N,") is favorable.

EEl The emission characteristics are further studied by plotting the
intensity of the dominant emission peak at 337 nm, which is the fun-
damental transition band of the second positive series betwee
excited levels C°T1, and B* IT; of the neutral nitrogen molecule, as a
function oq nitrogen flow rate at a heater temperature of 650°C.
hown mn Fig 2, the peak intensity increases as the nitrogen gas
w rate is increased from 60 SCCM to 70 SCCM. This indicates
that the increase in the nitrogen gas flow rate creates the additional
nitrogen source for the generation of nitrogen plasma, resulting in
the population increase of generated reactive nitrogen species. If
the flow rate is further increased to 120 SCCM, the emission inten-
sity of the nitrogen plasma decreases. The increase in the flow rate

ARTICLE scitation .orgfjournal/adv
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FIG. 2. Dependence of tlm'riasion intensity of nitrogen plasma for the
337-nm peakop the flow rate of nitrogen gas at a substrate temperature of 650 °C.
Lines betw oints are only included as guides to the eye. Intensity reaches its
maximum at a nitrogen flow rate of 70 SCCM.

increases the pressure inside the reactor, which leads to a decrease
in the energy per Nz molecule required to excite nitrogen molecules.
As a result, the excitation efficiency of N2 molecules in the plasma
decreases, resulting in a decrease in the emission intensity. A similar
characteristic of pressure dependence of the emission intensity—
where the emission intensity maximizes at a specific pressure—was
also observed.” The optimum flow rate that produces the maxi-
mum emission intensity is 70 SCCM. Under these conditions, the
more reactive the species are in the plasma, the more likely it is
that bonding occurs between gallium/indium and nitrogen during
nitride-based material deposition.

dependence of emission intensity on the heating temper-
ature was studied by varying the heater temperature, while the flow
rate of nitrogen gas was kept at 70 SCCM. The emission spectra
similar to those in Fig. 1 (not shown), characterized by four peaks in
the range 300-420 nm, with a dominant peak at 337 nm. The effects
of temperature on the intensity of the nitrogen plasma emission peak
at 337 nm at various flo es are shown in Fig. 3. At a constant
flow rate of nitrogen gas, as the temperature increases from 500 °C
to 650 °C, the intensity of nitrogen plasma emission increases. The
increase in temperature gives additional energy to the plasma so that
more excitation takes place. The additional thermal energy from the
heater increases the energy of the neutral molecules in the ground
state so that the energy is high enough for excitation. This means
that the population of excited neutral molecules increases, leading
to the increase in the optical emission intensity.

If the temperature is further increased to 700°C, the additional
thermal energy from the heater causes an increase in electron energy,
resulting in more electron collisions. To estimate the relative popu-
lation of reactive nitrogen species, the electron impact cross section
can be used as an approximation.”’ In nitrogen plasma, the electron
impact cross section increases with electron energy until it reaches
a maximum at an electron energy of around 12 eV, after which it
decreases. We believe that the decrease in the emission intensity at
heater temperatures higher than 650 °C is associated with a decrease
in the electron impact cross section. From this result, the optimum
heater temperature, i.e., that which produces the highest emission
intensity is 650 °C.
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FIG. 3. Dependence of emission intensity of nitrogen plasmmhe 337-nm peak
on the heater temperature at various nitrogen gas flow rates. Lines between points
are solely guides to the eye. The intensities for all nitrogen gas flow rates reach
their maximum at a temperature of 650 °C.

B. h of InGaN

Figure 4 shows a XRD spectra of the InGaN thin films grown
using the optimized growth temperature of 650 °C. The deposition
was carried out for a TMIn vapor composition (x,) of 0% (GaN),
50% (InGaN), and 100% (InN). The spectra show that all films are
highly oriented in the (0002) plane with a hexagonal structure. The
diffraction angles, 26, of the (0002) peak intensities are 34.7 ©, 32.4°,
and 31.4° corresponding to GaN, InGaN, and InN, respectively. The
other diffraction peaks are attributed to the (0004) planes of GaN,
InGaN, and InN.

In the case of InGaN with an indium vapor composition of
50%, no additional diffraction peaks, except those originating from
the (0002) plane, are observed. This implies that the grown film
has no crystallographic phase separation. The diffraction-intensity
distribution of the (0002) plane is matched with a Gaussian distri-
bution fitted to the curve, as shown in Fig. 5; however, the FWHM
of the diffraction-intensity distribution of InGaN is slightly wider
compared with that of GaN or InN. The broadening of the InGaN
diffraction peak is attributed to the finite crystalline domain size

effect.”
H
3 | £
g GaN g ?
£ 3
L__ InGaN j‘__
l_ InN o

20 0 40 50 60 70 80
20(7)

4. XRD spectra of InN, InGaN, and GaN thin fims on the sapphire subs
grown at a temperature of 650 °C and a nitrogen flow rate of 70 SCCM. InN was
grown using the same growth parameters as those of InGaN, but with a TMin vapor
concentration of 100%, while GaN was grown using a TMIn vapor concentration
of 0%.

InN InGaN GaN

Intensity (a.u)

30 31 32 33 34 35 36
26()

FIG. 5. XRD spectra of InN, InGaN, and GaN thin films on the sapphire substrate
with normalized intensity. The diffraction peak of InGaN is shifted to the lower
angle, indicating indium incorporation into the GaN-InN system. The dashed line
is the Gaussian curve fitting to the InGaN diffraction peak that is matched to the
original curve, indicating no phase separation in the InGaN films.

The normalized diffraction intensities of the (0002) peaks for
GaN, InGaN, and InN are shown in Fig. 5. The diffraction peak of
InGaN is shifted toward the lower diffraction angle relative to that
of GaN by incorporating indium into thé/§aN matrix. The concen-
tration of indium in the InGaN films is determined by calculating
the relative shift of the InGaN (0002) diffraction peak with respect to
the GaN (0002) peak and applying Vegard’s law, revealing an indium
concentration of about 55%. This result is close to the result obtained
fron‘ae EDS measurement, which is 54%.

Figure 6 shows the temperature dependence of the growth rate
of InGaN in the range 500-700 °C for an indium vapor composi-
tion of 50%. At temperatures of up to 650 °C, alkyl dea'nposition
and excited N> neutral molecules species control the growth rate.
As the growth temperature increases, the growth rate also monoton-
icﬂzcr&as&s. However, a further increase in temperature results
in a decrease in the growth rate due to a decrease in the availability
of excited N2™ neutral molecules, as reflected in the decrease in the
emission intensity. Moreover, in this temperature region, the des-
orption of gallium and indium from the growth surface starts to
dominate the process, leading to a decrease in the growth rate.”

400

375

350 -

325 |

Growth rate (nm/hour)

300 1 1 1
500 550 600 650 700

Growth temperature (°C)

FIG. 6. Growth rate of InGaM as a function of the substrate temperature at a
nitrogen gas flow rate of 70 SCCM.
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IV. CONCLUSION

An ECR plasma source has been successfully employed to pro-
duce reactive nitrogen species that react with TMGa and/or TMIn
at substantially low substrate temperatures during the growth of
InGaN by plasma-assisted MOCVD. OES revealed that reactive
nitrogen inside the plasma is dominated by excited N»" neuF
molecules. The excited N»" neutral molecules are vaporable for
the growth of group lI-nitrides and their alloys since they are not
high energetic species that are possible to grow films at reduced
damage. The emission intensity of the plasma relates to the pop-
ulation of generated reactive nitrogen species and depends signif-
icantly on the substrate temperature and flow rate of the nitro-
gen gas. The optimum temperature and flow rate that produce
the maximum population of reactive nitrogen species 650°C
and 70 SCCM, respectively. The GaN, InGaN, and InN thin films
grown on sapphire substrates at 650°C and 70 SCCM show a
highly oriented, hexagonal crystal structure in the (0002) plane.
The InGaN film grown using a TMIn vapor concentration of 50%
has an indium atomic composition of 54%, and this value is in
good agreement with the estimated indium concentra calcu-
lated using Vegard's law. The temperature dependence of the growth
rate of InGaN films is indicated by the temperature dependence
of emission intensity such that the optimum growth rate occurs
at650 °C.
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