BARID, Aziz Jihadian and Hadiyanto, Hadiyanto and Wibowo, Adi (2024) OPTIMALISASI ALGORITMA K-NEAREST NEIGHBORS, RANDOM FOREST DAN SUPPORT VECTOR MACHINE DENGAN EKPLORASI MODEL ENSEMBLE VOTING DAN STACKING UNTUK PREDIKSI KUALITAS UDARA. Masters thesis, UNIVERSITAS DIPONEGORO.
Full text not available from this repository.Abstract
Penelitian ini didasari karena perkembangan ekonomi, industrialisasi, dan urbanisasi yang pesat di Indonesia telah menyebabkan tingkat polusi dengan dampak negatif terhadap lingkungan dan kesehatan masyarakat. Tujuan penelitian ini untuk memprediksi kualitas udara menggunakan machine learning dengan algoritma K Nearest Neighbor, Support Vector Machine dan Random forest, dari model tersebut digabungkan menjadi ensemble learning. Selanjutnya teknik hyperparameter diterapkan kedalam proses prediksi untuk meningkatkan hasil. Penelitian ini menggunakan validasi K-fold cross untuk mengurangi overfitting. Hasil evaluasi menunjukkan bahwa model dengan menggunakan ensemble memiliki kinerja yang lebih baik dibanding dengan single algoritma yang ditunjukan dengan nilai error yang lebih kecil. Hasil penelitian menunjukkan bahwa penerapan hyperparameter membawa peningkatan kinerja model, khusus nya pada algoritma SVM karena dapat menangani fitur yang relevan dalam data secara runtun waktu. Wawasan ini memberikan arahan bagi sistem pemantauan kualitas udara yang efektif dan pengambilan keputusan yang tepat dalam pengelolaan polusi udara.
Kata kunci : prediksi, K Nearest Neighbor, Support Vector Machine, Random forest, Hyperparameter
This research is based on the fact that rapid economic development, industrialization and urbanization in Indonesia have caused levels of pollution with negative impacts on the environment and public health. The aim of this research is to predict air quality using machine learning with the K Nearest Neighbor algorithm, Support Vector Machine and Random forest, these models are combined into ensemble learning. Next, hyperparameter techniques are applied to the prediction process to improve results. This research uses K-fold cross validation to reduce overfitting. The evaluation results show that the model using the ensemble has better performance than the single algorithm as indicated by a smaller error value. The research results show that the application of hyperparameters brings increased model performance, especially the SVM algorithm because it can handle relevant features in time series data. These insights provide direction for effective air quality monitoring systems and informed decision making in air pollution management.
Keywords : prediksi, K Nearest Neighbor, Support Vector Machine, Random forest, Hyperparameter
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | prediksi, K Nearest Neighbor, Support Vector Machine, Random forest, Hyperparameter |
Subjects: | Sciences and Mathemathic |
Divisions: | Postgraduate Program > Master Program in Information System |
Depositing User: | Users 183 not found. |
Date Deposited: | 06 May 2024 04:30 |
Last Modified: | 06 May 2024 04:30 |
URI: | https://eprints2.undip.ac.id/id/eprint/22803 |
Actions (login required)
View Item |