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Abstract. A computational method on damage detection problems in structures was developed
using neural networks. The problem considered in this work consists of estimating the
existence, location and extent of stiffness reduction in structure which is indicated by the
changes of the structural static parameters such as deflection and strain. The neural network
was trained to recognize the behaviour of static parameter of the undamaged structure as well
as of the structure with various possible damage extent and location which were modeled as
random states. The proposed techniques were applied to detect damage in a cantilever beam.
The structure was analyzed using finite-element-method (FEM) and the damage identification
was conducted by a back-propagation neural network using the change of the structural strain
and displacement. The results showed that using proposed method the strain is more efficient
for identification of damage than the displacement.
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1 Introduction

Structural systems or machinery components tend to accumulate damage during their
operation life. Therefore, an effective and reliable damage assessment methodology
of the structural system is a very valuable tool. A determination of safety level of a
structural system during its operational life 1s essential not only for safe operation but
also maintenance cost reduction and failure prevention.

Occurrence of damage in a structural element reduces stiffness of the structure and
generates a small perturbation in its static or dynamic responses. A perturbation on
static responses can be identified by the behaviour of displacements or strains.
Meanwhile, the behaviour of natural frequencies and mode shapes can be used to
identify the perturbation on dynamic responses of the structure. A combination of
measured response and finite-element-methods (FEM) then can be developed in order
to identify these response perturbations which can be used to determine the size and
location of the damage of the structure.

Response of damaged structure will follow the pattern of the size and location of
the damage on its structure. Bishop has shown that this pattern can be generalized
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using Artificial Neural Network/NN [1]. Therefore, the damage detection on a
structural system or a machinery component can be conducted using NN which was
trained to identify the pattern of response characteristic of the structure.

Maity and Saha have developed a damage assessment in structure from changes in
static parameter using NN approach [7]. Unfortunately, this assessment was only
focused on single element damage and multiple element damage which consists only
of two damaged elements. In practical point of view this methodology 15 inadequate.
Therefore, a more general damage assessment methodology has to be developed.

The objective of this research i1s to develop a structural damaged detection
methodology from changes in static parameter, i.e.: displacement and strain of a
simple cantilever beam using neural network combined with FEM. In the present
work a random state is proposed to simulate stiffness reduction factor and damage
location of the structure such that values of the stiffness reduction factor and the
damage location are random. Using this random state the proposed method of
structural damage assessment may be able to be applied in more general condition.

2 Problem Formulation

First step in damage detection of a structure using neural network 1s modelling of the
structure to obtain data set which 1s used as input in the network training. This
structural modelling has to be able to represent all possibilities of damage condition
on the structure. The damage of the structure i1s modelled by stiffness reduction and
consists of size and location on the structure. In order to obtain the data set as input
for network training, values of the stiffness reduction are assumed to be random
number between ) and 1. The number and the location of damaged structural element
are also assumed to be random and it may be multiple element damage. In this present
work, structural response of strain and displacement due to specific loading obtained
by FEM were chosen as data set used for training the network.

When the structural responses as input data set was obtained then training of the
network 15 conducted until outputs of the networks satisfy the desired target or until
the network reach desired performance which is indicated by error level (difference
between output and desired target of network). Usually this error is formulated as
mean square error (MSE). The above principle of neural network is illustrated by a
simple schematic in Fig. | below.

Target

Neural Network

——p»| Including connections Compare
(called weights)
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Adjust
weights

Fig. 1. A schematic of an artificial neural network [2]
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At following section the structural modelling and the neural networks will be
discussed more detail.

2.1 Structural Modelling

The strain energy of a structural element is formulated as

1 T
e r ].
U 2L” {J} {E}:I'V{)I (1)
Introducing the stress-strain relation in Eq. (1), we have
U= %j‘ {e¥ [Dlelvor (2)

Note that {o} = [D] {&}, whereas D represents constitutive matrix of the structure
material. At the other hand the strain-displacement relation 1s given by

(e} =[Bl{d]} (3)

where B 1s derivative of shape function and d is structural displacement. Finally the
stiffness matrices of the structural element are formulated as

[K]= L_h_l[s]r'u;r][s]dm (4)

and the strain of the structure 1s given by the following formulae [6]

E[_t,::'fi:ﬂ:—;d_tj =—zv" (3)
dx ax”

where u and v are vertical and transversal displacement, respectively. Whereas x and
z are structural coordinate in horizontal and vertical direction as well as.

The nodal displacement due to applied load then can be calculated using
following relation

[k fa}=1{F} (6)
where { F } is the apllied load node.

The damaged modelling on the structure can be conducted by a reduction of the
structural stiffness which is represented by reduction of the cross section area of the
structural elements. In structural modelling using FEM the stiffness matrices of the
damaged structural element are formulated as follows:

[K,)=ee|K] (7)

where: [K,] : stiffness matrix of damaged structural element
[K] : stiffness matrix of undamaged structural element
ee : stiffness reduction factor

It should be noted that the value of stiffness reduction factor is between zero and
one (O<ee<l). For undamaged structural element ee = 1, meanwhile ee < |
represents damaged structural element.
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2.2 Neural Network

An Artificial Neural Networks (ANN) 1s computational system which is inspired by
the biological brain in their structure, data processing and learning ability with some
assumptions as follows [2][5][8][9]:

¢ The mformation processing 1s conducted at the simple element called neuron

¢ The signals are transmitted from neuron to other neuron through the connection

e Each connection between neurons has a specific weighting factor

¢ In order to determine the output, an activation function 1s applied in the input and
then the output of the system compared to an desired target.

Generally, the neural network is characterized by: network architecture which
simulates relation pattern of neurons, activation function, and training method. Fig.2
illustrates multilayer network, the most common architecture of network. Besides
input and output, this network also consists of hidden layers although it is possible to
build a network without hidden layer. The network in Fig. 2 consists of R number of
input unit (p, ps, ... , pr), two hidden layers and one output layer.

The input layer receives input pattern and transmits the signal directly to the next
layer. Meanwhile, the hidden layer consists of a certain number of processing units
and each node in the preceding layer is fully connected to all processing units. These
connections are called the weights that represent different weighting scales to the
input signals. The weighted signals then are summed up by the processing unit and a
response transmitting is activated to the next layer. The activation function may be
linear or non-linear function. The above procedure 1s illustrated in Fig 3.

Inputs Layer 1 Layer 2 Layer 3
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Fig. 2. Multilayer network [2]
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Fig. 3. Artificial neuron

The input pattern is propagated forward and actual responses are obtained. The
difference between the actual and the desired outputs is then through network
propagated backward to modify the weights such that the mean-square error (MSE) is
minimized. This supervised training continues until the training process complete. In
present work, Lavenberg Merquardt algorithm was applied as training algornthm.

Using Lavenberg Merquardt algorithm the mean square error (MSE) is used as
performance function, which is formulated as follows

1 N 1 N
MSE=—YS"() =—% (v, —1.)2 (8)
N;(-‘-’J N;[}, t)

where 1, 1s desired target, y; 1s actual output, and N 1s number of tramning data.
According to Lavenberg-Marquardt [2][4]

Aw = [T (w).Jw)+ud] ' T e(w) (9)
where J{w) is Jacobian matrix
i -::}el (w) f}el (w) » f}el (w) |
ow, ow, aw,
de,(w)  de,(w) de, (w) (10)
J(w) = dw, dw, aw,
ae_,,‘,‘{w} ﬂeﬁd{ w) o ae_,,‘,‘{w}
i ow, ow, ow, |

The Marquardt modification to the back-propagation algorithm thus proceeds as
follows [4]:

1. Present all inputs to the network and compute the corresponding network outputs

and MSE over all inputs (using Eq. (8)).

Compute the Jacobian matrix Eq. (10).

Solve (9) to obtain Aw

Recompute MSE using w+Aw. If this new MSE i1s smaller than that computed in

step 1, then reduce p by f,and go back to step 1. If the MSE is not reduced, then

increase i by [ and go back to step 3.

5.  The algorithm 1s assumed to have converged when the MSE has been reduced to
some error goal.

P
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3 Numerical Example

The computer codes which have been developed in the present work were applied on
a simple cantilever beam structure. For training the neural network the calculated
static displacement and strain at several nodal points were used. Reducing of EJ
values 1s applied in order to define the damage of the structural element.

Fig. 4 shows a cantilever beam with rectanguler cross-section subjected to vertical
load of 100 N at the tip. The beam has 0.2 m in length, uniform cross section with i =
(.01 m and / = 0.02 m, whereas the Young's Moduli of the material i1s £ = 200 GPa.
The beam was divided into eight element to find the deflection and the strain using
FEM.

y Load F
R 100N
Z X
— Sy | :
h=depth
bwidth | L

Fig. 4. Cantilever beam with tip loading

As mentioned previously, in the present work the displacement and the strain of the
structure are used as the input for NN training. Therefore, a validation of the analysis
results of the strain and the displacement of the beam are needed. Table 1 shows the
displacement of the cantilever beam. It can be seen that the displacements obtained in
present work showed very good agreement with those obtained by MSC-Nastran and
exact calculation. A very good agreement is also shown by the strain of the beam
obtained in present work, by MSC-Nastran and exact calculation as depicted in Table 2.
From comparisons in Table 1 and Table 2, it can be concluded that the results using
FEM in the present work is acceptable.

Table 1. Displacement of Cantilever Beam Used in Present Work

Node Present Result MSC-Nastran Exact
(m) (m) (m)
1 0 0 0
2 0.179 x10™ 0.182x 107 0.179 x 107
3 0.688 x10™ 0.691 x 107 0.688 x 10
4 1.477 x107™ 1.483 x10™ 1.476 x 10
5 2.500 x107™° 2.508 x10™ 2.500 x 107
6 3.711 x107° 3.720 x10™ 3.711 x 107
7 5.063 x10™ 5.074 x10™ 5.062 x 107
8 6.508 x107 6.521 x10™ 6.508 x 107
9 8.000 x107™ 8.015x10™ 8.000 x 107
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Table 2. Strain of cantilever beam used in present work
Node Present Result MSC-Nastran Exact
{m/m) {(m/m) {m/m)
1 3.000 x 107 2999x 107 | 3.000x 10™
2 2.625 x 107 2624x 107 | 2.625x 10™
3 2.250 x 107 2249 x 107 | 2.250x 107
4 1.875 x 10~ 1.875x 107 1.875x 107~
5 1.500 x 107 1.499 x 107 1.500 x 107
6 1.125 x 107 1.124x 10 1.125x 10
7 0.750 x 107 0749x 10* | 0.750x 107
8 0.375x 107 0378 x10% | 0.375x 10°
9 0 0 0
Table 3. Variation of NN training and the result for displacement as input
Variation Code Layer B MSE Epoch [ (s)
1 nndVarl 8 16 8 1 5.209 x107 | 1000 | 1679.266
2 nndVar2 | 8 16 8 2 2.549 x107 | 1000 | 1653.579
3 nndVar3 16 8 1 76.30 x10° | 1000 | 1289.312
4 nndVar4 16 8 2 21.30 x107 | 1000 | 1259.516
10° . . .
— nndVar1 |
——nndVar2 (]
— - nndVar3 |3
---- nndVar4 _:
L _
UJ '\-: :__—\_ - —_— _ —_E
= Y. T ]
10
1D i i i i
0 200 400 600 800 1000
Epoch

Fig. 5. Variation of training error with displacement as input

For traning of NN the stiffness reduction factor was assumed to be random
number from (O to 1. The location of the damage in the structure is also assumed to be
random. When the displacement 1s taken as the NN input, the training was conducted
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Table 4. Variation of NN training and the result for strain as input

Variation Code Layer B MSE Epoch t(s)
1 nnsVarl 8 16 8 1 4.641 x10° | 1000 1665.719
2 nnsVar2 | 8 16 8 2 0.981 x10™ | 592 1002.719
3 nnsVar3 16 8 1 0.987 x10” | 69 102.688
4 nnsVard 16 8 2 0.976 x10™ | 61 83.391
]
10 ¢ . . : .
: — - nnsVart
- nnsVar2 ||
; — nnsVar3 | ;
2| —nnsVar4 | |
m } :
@) 5
= ; - ]
A B — h ~ 1
1D'E- | L L L
0 200 400 600 800 1000
Epoch

Fig. 6. Variation of training error with strain as input

using different values of layer and . Table 3 shows the training results of NN with
displacement as input. Meanwhile, the variation of training error with number of
epoch for several variations 1s shown in Fig. 5. It is interesting to note that the error
for nndVarl and nndVar2 get reduced significantly after a few epoch (300 epoch). It
can be observed that the varnation of nndVar2 showed the best performance.
However, the desired error (1.000 xl()'s) was not reached as the testing error tends to
constant at 2.549 x107 after 600 epoch and taking enough computational time.

Strains of the beam are calculated at the same nodal point to that of the
displacement. Thus in this case NN inputs also have nine nodes consisting of strain
values.The stiffness reduction factor in this case is assumed to be a random number
between () to 1 with randomized location of damage. A variation as shown in Table 4
was applied to train the NN with strains as input. The result show that the desired
error level (1.000 x10™®) was reached by nnsVar2, nnsVar3 and nnsVar4 in a range of
1000 epoch. It can be observed from Fig. 6 that the variation of nnsVard showed the
best performance. The desired error 1s reached by this variation in 61 epoch within
short period of time.
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From the results, it can be seen that NN with strains as input can reach the desired
error in small number of epoch and low computational time. The comparison results
between input of strains and of displacement are depicted in Figs. 7, 8 and 9. It is
evident that 1t 1s better to use the strains as input in the NN training in order to achieve
more efficient damage detection of structures or machinery components.

Comparison of MSE

8.00E-04+
6.00E-04 1|
w
0 4. |
= 4.00E-04 m Displacement
2 DDE-D4-'/ m strain
0.00E+00-
1 2 3 4
Variation

Fig. 7. Comparison of MSE for variation of NN training

Comparison of Epoch

Epoch

o Displacement
B Strain

1 2 3 4

Variation

Fig. 8. Comparison of epoch for variation of NN training
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Comparison of Computational Time

2000+

1600
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8004 o Displacement

m Strain
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400
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Fig. 9. Comparison of computational time for vanation of NN training

4 Conclusions

The main objective of the present research is to identify the size and the location of
damage of a cantilever beam structure using neural network. For this purpose. a
computer code was developed in which structural response in forms of displacement
and strain due to damage 1s carried out. The damage of the structure is modeled as a
stiffness reduction of a structural element wherein the stiffness reduction factor is
treated as random number between (0 and 1. In this research the location of the
damage 1s also tretated as randomized location. The response data then are used as the
input of the network to determine the size and the location of the damage. It is clearly
observed from the result that selection of NN architecture 1s very important in the
accuracy of the result. The networks showed that lower number of hidden layers gives
shorter computational time. The factor of [} in training algorithm of Lavenberg
Merquadrt tends to accelerate computational time to reach the desired error. The
output results also showed that the performace of network is improved when strain is
used as input instead of displacement.
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