BRAIN VOLUME CHANGES AS PREDICTORS OF FXTAS PROGRESSION

PERUBAHAN VOLUME OTAK SEBAGAI PREDIKTOR PERKEMBANGAN FXTAS

Thesis

Submitted to fulfill the assignment and fit-out requisite in passing Post-graduate Program Majoring Genetics Counseling Diponegoro University Semarang

> Zukhrofi Muzar 22010111400105

Biomedical Science Post Graduate Program Majoring Genetics Counseling Diponegoro University Semarang 2014

THESIS

Brain volume changes as predictors of FXTAS progression

Arranged by

Zukhrofi Muzar

22010111400105

Has been defended in front of the defense committee and has been approved by:

UC Davis MIND Institute, USA Principal supervisor Diponegoro University, Indonesia Principal Supervisor,

Prof. Randi Hagerman, M.D.

DR. Dr. Tri Indah Winarni, M.Si.Med, PA NIP. 19630128 198902 2 001

Supervisor,

Supervisor,

Andrea Schneider, Ph.D.

Prof. Dr. Sultana MH Faradz, Ph.D. NIP. 19520202 197901 2 001

Recognition, Director of Graduate Programs Masters in Biomedical Sciences, Diponegoro University

> Prof. Dr. dr. Tri Nur Kristina, DMM, M.Kes NIP. 195905271986032001

DECLARATION

I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which to a substantial extent has been accepted for the award of any other degree or diploma of the university or other institute of higher learning, and there is no plagiarism as defined by Permendiknas No. 17, 2010. Knowledge obtained by the product of publishing or those not or not yet published, the sources were explained in the writing and reference.

Semarang, February 2014

Zukhrofi Muzar

CURRICULUM VITAE

Name	Zukhrofi Muzar
Date of birth Place of Birth Email	06-28-1986 Duri, Riau Province, Indonesia <u>muzar.zukhrofi@gmail.com</u>
Institution Affiliation	City Health Office, Solok, West Sumatera Province, Indonesia
Current address	Jalan lumba-lumba 130 Duri, Riau province, Indonesia 28884
Nationality	Indonesian
Education and Training	
Nov 2012 – Nov 2013	Research fellow in neurodevelopmental disorders including fragile X syndrome and autism at UC Davis MIND Institute as part of master program in Biomedical Science, Diponegoro University, Indonesia
2011-present	Master's Candidate in Biomedical Science, major: Genetic Counseling at Diponegoro University, Indonesia
2008-2010	Medical Doctor, University of North Sumatera (USU), Indonesia
2004-2008	Bachelor of Medicine, University of North Sumatera (USU), Indonesia
Working Experience	
2011 – present	General Practitioner (Civil servant) at Public Health Center, Tanjung Paku , Kota Solok, West Sumatera Province, Indonesia
2010 – 2011	General practitioner at Emergency Unit Helvetia General Hospital, Medan, Indonesia General Practitioner at Athika Shiddiq Clinics, Medan, Indonesia Lecturer at Midwifery School Helvetia, Medan, Indonesia General Practitioner at Sumatera Clinics, Binjai, Indonesia

General Practitioner at Budi Medical Centre, Jati Jajar, Depok, Indonesia

Publications

- 1. **Muzar Z**, Pasha M. The effect of the propolis on the growth of staphylococcus aureus. Abstract: 2nd Annual meeting of pharmacy, pharmacology and medicine, Medan, Indonesia, 2007
- 2. **Muzar, Z**., Schneider, A., Adams, P., Hagerman, R. Narcotic use in FXTAS. Abstract: 1st international conference on the *FMR1* premutation, Italy, 2013.
- 3. Schneider, A., **Muzar, Z**., Summers, S., Tassone, F., Seritan, A., Rivera, S., Grigsby, J., Hessl, D.' Hagerman, P., Hagerman, R. Female characteristics of fragile X-associated tremor/ataxia syndrome. Abstract: 1st international conference on the *FMR1* premutation, Italy, 2013.
- Lechpammer, M., Clegg, MS., Muzar, Z., Huebner, PA., Jin, LW., Gospe, SM Jr. Pathology of Inherited Manganese Transporter Deficiency (Annals of Neurology, 2014)

Training / Workshop

- 1. Animal Care and Use 101 at UC Davis, USA 2013
- 2. Use of Controlled Substances at UC Davis, USA 2013
- 3. Biological safety and medical waste management at UC Davis, USA 2013
- 4. Collaborative Institutional Training Initiative at UC Davis, USA 2013
- 5. 10th Medical Genetic Course: from basic to clinic. Faculty of Medicine Diponegoro University in collaboration with Department of Human Genetics, Radboud University Nijmegen Medical Centre, The Netherlands. Semarang, Indonesia, 2012
- 6. Workshop on Neurogenetics. Faculty of Medicine Diponegoro University. Semarang, Indonesia, 2012
- 7. National training on HIV AIDS. The Indonesian Doctor Association, Medan, Indonesia, 2010
- 8. Airway Management Workshop. 9th National Congress of Indonesia Society of Anesthesiologists, Medan, Indonesia, 2010
- 9. One Asia Forum. Asean foundation, Kuala Lumpur, Malaysia, 2009
- 10. Workshop on Youth and Multiculturalism, SEAMEO-SPAFA, Chiang Mai, Thailand, 2008
- 11. International Training on Disaster Management, World Youth Foundation, Melaka Malaysia, 2008
- 12. International Workshop Research Exchange, International Federation of Medical Students' Association (IFMSA), Osaka, Japan, 2007
- 13. PCR and DNA Sequencing. Rajawali Hospital, Bandung, Indonesia, 2006

ACKNOWLEDGMENTS

I am extremely grateful to my supervisor, Professor Dr. Sultana MH Faradz, Ph.D., the head of CEBIOR-UNDIP, without her excellent support, guidance and patience, this thesis would not have been possible. She has provided me a great opportunity to work under her international networks at University of California Davis MIND Institute.

I would like to express my deepest gratitude to Professor Randi Hagerman, M.D., for his superb mentorship during my one-year internship at UC Davis MIND Institute. The valuable discussions and tremendous support from her are paramount in my life and development as an individual and as a professional. Her warm and positive attitude has given me example as a humanist physician-scientist.

I would really like to thank Andrea Schneider, Ph.D, assistance researcher at UC Davis MIND Institute for her engagement as co-supervisor in this master thesis. She has been giving me guidance in learning scientific writing and statistics. She has been very kind and supportive to be and was always prompt when I need help. I am amazed with her great scientific work and humble personality.

I would also like to thank Jun Yi Wang, Ph.D, postdoctoral fellow at UC Davis Mind and Brain, who helped me work on the brain MRI analysis at Susan Rivera's neuroimaging lab. She also taught me to analyze the brain MRI, as well as helped with arranging my research ideas and guided me through the application of various statistical techniques to my work.

Special thank goes to my principal supervisor, DR. Dr. Tri Indah Winarni, for the motivation, helping me build my self-confidence in this scientific world. She really helped me to simplify and to organize my ideas in this paper.

I would thank Prof. Dr. dr. Tri Nur Kristina, DMM, M.Kes and dr. Dodik Tugasworo, Sp.S (K) for critically examining my thesis.

I would also like to acknowledge the help of Patrick Adams, who provided me Brain MRI images and helped me to decide subjects for the study. Also special thanks to Kylee Cook who really helped with collecting molecular data.

I am most grateful to my friends Zach, Russell, and Arthur for providing me the favor to proofread this manuscript, covering my flaws in English writing.

I want to thank the Bureau of Planning and Overseas Coordination (BPKLN), Ministry of Education, Indonesia, especially to DR. AB Susanto, Msc as the excellent scholarship coordinator, for providing me with financial support during my study years.

I would also like to thank an awesome psychologist from Barcelona, Marieta Diez Juan, M.A., and her husband Angel, a young talented geneticist Dr. Reymundo Lozano, the best genetic counselor I have ever known Louise Gane, M.S., a brilliant autism researcher Tasha Oswald, Ph.D., for their friendship that helped me through some problems that I had been going through. They really provided some much needed humor and entertainment, cheering me up and stood by me through the good times and bad.

I would like to thank Julie, Jacky, Jonathan, Tasleem, in the Fragile X team at UC Davis MIND Institute who helped me with many things until small important technical problems.

I would also thank Dr. Tanjung, for her generous help with my data collection and let me borrow her flash drive for a month.

I would also like to thank all the staff of the Center for Biomedical Research (CEBIOR), Semarang, Central Java, Indonesia, Ardina Aprilani, Dwi Kustiani, Intus, Lusi Suwarsi, Rita Indriati, and Wiwik Lestari for their assistance during my study.

I thank to all of my colleagues at my master program, Bang Doni, Ira, Tami, Tya, Sari, Gara, Hesty, Mba Isna, Venty, Mba Ziske for their motivation, progress, and friendship.

Last, but by no means least, I would like to thank my parents, Ali Muzar and Murniati and my whole extended family. Being far away for two years from their youngest kid has been tough for us. I also want to thank my brother Zuharmen Muzar and my five sisters Zartina Muzar, Zuryetti Muzar, Zulia Muzar, Zullaili Muzar, Zahraini Muzar for helping me to get things done. Also, I thank them for helping me stay connected with my 12 amazing nephews and nieces who always bring me happiness.

CONTENTS

TITLE.	i
APPROVAL SHEET	ii
DECLARATION	iii
CURRICULUM VITAE	iv
ACKNOWLEDGEMENTS	vi
CONTENTS	ix
LIST OF ABBREVIATIONS	xi
GLOSSARY	xii
LIST OF PANEL AND TABLES	xiii
LIST OF FIGURES	xiv
LIST OF APPENDICES	XV
ABSTRACT (ENGLISH)	xvi
ABSTRAK (INDONESIAN)	xvii
CHAPTER 1 INTRODUCTION	1
1.1 Background	1
1.2 Research questions	3
1.3 Study objectives	3
1.3.1 General objective	.3
1.3.2 Specific objectives	4
1.4 Research benefits	.4
1.5 Originality	5
CHAPTER 2 LITERATURE REVIEW	6
2.1 Prevalence of FXTAS	6
2.2 Clinical phenotype of FXTAS	6
2.2.1 Spectrum of FXTAS symptoms	6
2.2.2 The role of gender in FXTAS	8
2.3 Diagnosis and clinical severity stage of FXTAS	10
2.4 Radiological findings in FXTAS	.11
2.5 Neuropathological hallmark of FXTAS	.13

2.6 Molecular mechanism of FXTAS	15
2.6.1 Triggering events	16
2.6.2 Features of cellular dysregulation	17
2.6.3 Additional factors leading to neurodegeneration and FXTAS	18
2.7 Quantitative brain measurement with FSL (Functional MRI of the-	
Brain software library)-SIENAX	19
2.8 Theoretical framework	22
2.9 Conceptual framework	22
CHAPTER 3 RESEARCH METHODS	23
3.1 Research field	23
3.2 Setting, Location and Period of Research	23
3.3 Research Design	23
3.4 Research subjects	23
3.5 Inclusion criteria	24
3.6 Exclusion criteria	24
3.7. Research variables	24
3.8 Molecular measures and clinical stage	25
3.9 Imaging data acquisition	28
3.10 Image processing	29
3.11 Operational definitions	30
3.12 Research flow	31
3.13 Statistical analysis	31
3.14 Research ethics	32
CHAPTER 4 RESULTS	33
CHAPTER 5 DISCUSSION	38
CHAPTER 6 CONCLUSION AND FUTURE DIRECTION	41
CHAPTER 7 SUMMARY	43
RINGKASAN (INDONESIAN)	45
REFERENCES	47
APPENDICES	58

LIST OF ABBREVIATIONS

BET	Brain extraction tool
ССР	Corpus callosum splenium
CNS	Central nervous system
CSF	Cerebrospinal fluid
DTI	Diffusion tensor imaging
FAST	FMRIB's automated segmentation tool
FLAIR	Fluid attenuated inversion recovery
FLIRT	FMRIB's linear image registration tool
FMR1	Fragile X mental retardation 1
FMRIB	Functional magnetic resonance imaging of the brain
FMRP	Fragile X mental retardation protein
FSL	FMRIB's software library
FSL	FMRIB software library
FXTAS	Fragile X associated tremor/ataxia syndrome
GMV	Grey matter volume (total)
HC	Healthy Control
MCP	Middle cerebellar peduncles
MNI152	Montreal Neurological Institute 152
MRI	Magnetic resonance imaging
mRNA	Messenger RNA
PGMV	Peripheral grey matter volume (cortical)
PolyQ	Polyglutamine
RNA-BP	RNA binding protein
SD	Standard Deviation
SIENA	Structural image evaluation, using normalization, of atrophy
UTR	Untranslated region
VCSFV	Ventricular cerebrospinal fluid
WBV	Whole brain volume
WMH	White matter hyperintensities
WMV	White matter volume

GLOSSARY

1.	FXTAS	Fragile X-associated tremor/ataxia syndrome (FXTAS); a neurodegenerative disorder
		associated with the premutation in the <i>FMR1</i>
2.	Fragile X premutation	CGG repeat length of 55 to 200 in the <i>FMR1</i> gene
3.	Grey matter	A major component of the central nervous system, consisting of neuronal cell bodies, neuropil (dendrites and myelinated as well as unmyelinated axons), glial cells (astroglia and oligodendrocytes) and capillaries: total grey matter in the brain
4.	Head coil	A special device that is placed around the person's head to help produce very detailed pictures of the brain
5.	Peripheral grey matter	Grey matter in cortex
6.	SIENAX	A package for estimation of whole brain volume (WBV), white matter volume (WMV), peripheral grey matter volume (PGMV), grey matter volume (GMV), and ventricular cerebrospinal fluid volume (VCSFV), normalized for subject head size
7.	Ventricular Cerebrospinal fluid	Cerebrospinal fluid in the ventricles of the brain
8.	White matter	Nerve fibers in the brain consists mostly of glial cells and myelinated axons that transmit signals from one region of the cerebrum to another and between the cerebrum and lower brain centers
9.	Whole brain	Total brain tissue

LIST OF PANEL AND TABLES

0
8
3
4
6
6

LIST OF FIGURES

Figure 1 The imaging features of FXTAS 12
Figure 2 Neuronal intranuclear inclusions14
Figure 3 Proposed model for molecular neuropathology in fragile X-
associated tremor/ataxia syndrome16
Figure 4 Schematic representation of the progression of CNS dysfunction19
Figure 5 Example output from the FSL SIENAX tool21
Figure 6 Comparison of SIENAX output of patient with FXTAS
and healthy control in axial view

LIST OF APPENDICES

Appendix I Brain volume measurements at 2 time points of 21 patients	
with FXTAS	58
Appendix II SIENAX usage	. 59
Appendix III MRI 8 channel head coil protocol	. 62
Appendix IV MRI 32 channel head coil protocol	. 63
Appendix V Molecular data of 21 patients with FXTAS	64
Appendix VI Ethical clearance	65
Appendix VII Article	69

ABSTRACT

Background: Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder that has a pathological effect on the brain. Hypothesis of the study is that the neuronal dysregulation leading to neuronal loss and white matter hyperintensity (WMH) in FXTAS may cause brain volume changes, and may be used as a measure of disease progression in FXTAS.

Methods: Brain volume changes in FXTAS were analyzed longitudinally on two separate time points using SIENAX (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/SIENA). This study included 21 patients with FXTAS (mean age: 67.1y; SD = 6.2; 15 males and 6 females) with two MRI scans following initial diagnosis of FXTAS. The average interval between measurements was 2.2 years (SD = 1.2) with an interval range of 0.7-5 years. The patients were ascertained from families with and without a fragile X syndrome proband at the University of California at Davis Medical Center. Healthy control subjects (mean age: 70.9y SD = 6.7; 15 males and 9 females) were matched by age and gender to patients with FXTAS at their time 2 measurements, but the controls were assessed only once.

Results: Both annualized WBV and VCSFV change are predictors of occurrence of higher FXTAS stage. PGMV, GMV, WBV and VCSFV in the FXTAS subjects at time 2 were statistically different from healthy controls. The mean rates of WBV and VCSFV change in individuals with FXTAS were -1.5%/year and 3.05%/year respectively. There were no correlations of annualized VCSFV change and WBV change with both *FMR1* CGG repeat size and *FMR1* mRNA levels.

Conclusion: The results of our study revealed the importance of WBV and VCSFV measurements in the progression of FXTAS. Further study is needed to evaluate the rate of brain volume change with age in FXTAS and to investigate its benefit for making prognoses, monitoring disease progression, and determining the effectiveness of therapeutic treatment of FXTAS.

Keywords: FXTAS, fragile X premutation, longitudinal MRI, brain volume, White Matter Volume, Grey Matter Volume, Ventricular Cerebrospinal Fluid Volume

ABSTRAK

Latar belakang: *Fragile X-associated tremor/ataxia syndrome* (FXTAS) adalah penyakit neurodegeneratif dengan efek patologis pada otak. Hipotesis dari studi ini adalah disregulasi saraf yang menyebabkan hilangnya neuron dan bertambahnya hiperintensitas *white matter* di FXTAS dapat menyebabkan perubahan volume otak, sehingga mungkin dapat digunakan sebagai ukuran perkembangan penyakit pada FXTAS.

Metode: Perubahan volume otak pada FXTAS dianalisis secara longitudinal pada terpisah menggunakan dua titik waktu yang dengan SIENAX (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/SIENA). Penelitian ini melibatkan 21 pasien dengan FXTAS (rerata usia: 67,1 tahun SD = 6.2; 15 laki-laki dan 6 perempuan) yang memiliki 2 MRI otak setelah diagnosis FXTAS. Rerata interval antara pengukuran adalah 2,2 tahun (SD = 1.2) dengan *range* 0,7-5 tahun. Pasien diambil dari keluarga dengan dan tanpa fragile X syndrome di University of California *Davis Medical Center*. Subyek kontrol sehat (rerata umur: 70,9 tahun; SD = 6.7; 15 laki-laki dan 9 perempuan) dicocokkan sesuai dengan usia, jenis kelamin dengan subjek FXTAS pada pengukuran kedua, tetapi kontrol hanya dievaluasi satu kali.

Hasil: Perubahan WBV dan VCSFV tahunan adalah prediktor kejadian FXTAS stadium tinggi. PGMV, GMV, WBV dan VCSFV pada subjek FXTAS waktu ke dua berbeda signifikan secara statistik dibandingkan subjek kontrol. Rerata perubahan WBV dan VCSFV pada FXTAS masing masing adalah -1.5%/tahun dan 3.05%/tahun. Tidak ada hubungan antara perubahan WBV dan VCSFV dengan *FMR1* CGG *repeats* dan *FMR1* mRNA.

Kesimpulan: Penelitian ini membuktikan pentingnya pengukuran WBV dan VCSFV dalam perkembangan penyakit FXTAS. Penelitian lanjutan dibutuhkan untuk mengevaluasi tingkat perubahan volume otak sesuai dengan bertambahnya umur pada FXTAS dan untuk menginvestigasi keuntungannya dalam membuat prognosis, pengawasan perkembangan penyakit, dan menentukan terapi efektif untuk FXTAS.

Keywords: FXTAS, *fragile X premutation, longitudinal MRI, brain volume, White Matter Volume, Grey Matter Volume, Ventricular Cerebrospinal Fluid Volume*