CHAPTER I

INTRODUCTION

1.1. Background

Diet is one of the main environmental factors that contribute to high fat diet (HFD). Human studies have shown that increased fat intake is associated with body weight gain which can lead to high serum of fat diet and other related metabolic diseases.¹ Fasting or feeding a high fat diet abolished lipogenesis (fat formation) in adipose tissue and reduced glucose oxidation markedly. Lipogenesis increased to the highest levels on a high-carbohydrate, fat-free diet. HFD is the second killer in America it causes 300,000 deaths a year. Several more highly publicized social evils are comparatively small problems. A highdiet in saturated fat can dramatically raise the level of cholesterol, increasing the risk of heart disease. The AHA recommends limiting total fat intake to between 25 to 35 percent of total calories with only 7 percent coming by way of saturated fats.^{2,3}

In obesity case, there is a chronic systemic inflammation with increased of proinflammatory cytokines in the circulation. TNF- α in adipose tissue is the first cytokine observed in obese mice. Inflammation is considered to play an important role in the pathogenesis of insulin resistance in obese individuals. Foam Cells are fat-laden immune cells of the type macrophage. They are an indication of plaque-build up, or atherosclerosis, which is commonly associated with increased risk of heart attack and stroke. Foam cells are formed when the body sends macrophages to the location of a fatty deposit on the blood vessel walls. The macrophage surrounds the fatty material in an attempt todestroy it. The cell becomes filled with lipids (fats). The lipids surrounded by the macrophage give it a "foamy" appearance. Obese individuals with insulin resistance showed elevated levels of TNF- α that may have a causal relationship.^{4,5}

Cytokines play a dual role in atherosclerosis. Proinflammatory and Th1related cytokines promote the development and progression of the disease, whereas anti-inflammatory and regulatory T cell–related cytokines exert clear antiatherogenic activities. Cytokines are low-molecular-weight protein mediators that usually act at short range between neighboring cells in lymphoid organs or inflamed tissues, cytokines when they are administered to humans , they produce inflammation, fever and in some cases death. They are involved in many physiological processes and are especially important for regulating inflammatory and immune (innate and adaptive) responses. All cells involved in atherosclerosis are capable of producing and responding to cytokines. At a more advanced stage of the disease, proinflammatory cytokines destabilize atherosclerotic plaques by promoting cell apoptosis and matrix degradation. Macrophage apoptosis results in the formation of cell debris, which contributes to the enlargement of the lipid core.^{6,7}

High-cholesterol diet plays a important role for the occurrence of chronic inflammation, including atherosclerosis. This diet will induce inflammatory reaction, and the release of chronic inflammatory cytokines including, TNF- α

and IL-1.⁸ TNF α are the most important proinflammatory cytokines to be studied, due to their effect to stimulate inflammation. Thereby, their effect should be suppressed by giving anti-inflammatory agents.

The commonly held belief that high fat and cholesterol consumption auses atherosclerosis has been questioned, yet there is still known to be a strong link between lipids and atherosclerosis based on experimental and clinical relationships between hypercholesterolaemia and atheroma. Because fat and cholesterol are the substances of which plaque consists, they are both considered to be contributors to the cause of atherosclerosis. This however remains unverified. Inflammation is considered to be a cause of atherosclerosis rather than fat and cholesterol. ^{9,10}

One of the functional foods that could be expected to lowering metabolic disease is olive oil. EVOO is a type of oil very different from other oils, As how to obtain and composition, EVOO is one of the food that have a functional content of mono unsaturated fatty acids (MUFA), which partiallylarge oleic acid present in form and contains a lot of antioxidants (such as tyrosol,hydroxytyrosol) and oleuropein which known as antidiabetic andantioxidant.¹¹

Olive oil is the main source of fat, which has anti-inflammatory compounds including at minimum nine categories of polyphenols and more than twenty well researched anti-inflammatory nutrients. Research has documented a wide variety of anti-inflammatory mechanisms used by EVOO polyphenols to lower the risk of inflammatory problems. These anti-inflammatory benefits of

3

EVOO do not depend on large levels of intake. As little as 1-2 tablespoons of EVOO per day have been shown to be associated with great anti-inflammatory benefits.^{12,13} So far, there is no experimental study which evaluate the effect of EVOO in different doses for reducing the level of pro inflammatory cytokine (TNF α) and presence of foam cell. This study will determine the effects of EVOO for 60 days of treatments period on the foam cell and TNF α as inflammatory markers in rat undergo high fat diet.

1.2.Research Questions

Whether EVOO have effectiveness to reduce level of proinflammatory cytokine (TNF- α) and fat laden cells (foam cells) in HFD *Wistar rats*?

1.3.Objectives of the study

1.3.1. General Objectives

Based on the research question mention above, the general purpose of this study is to investigate the effectiveness of EVOO on the level of proinflammatory cytokine (TNF- α) and fat laden cells (foam cells) in Wistar rats induced by HFD.

1.3.2. Specific Objectives

- a. To proof the levels of TNF α among high fat diet rats that receive EVOO in doses are lower than those which do not receive EVOO.
- b. To find the effectiveness of EVOO in reducing TNF- α .
- c. To proof reducing the presence of foam cells among high fat diet rats that receive EVOO in doses than those which do not receive EVOO.
- d. To find the effectiveness of EVOO in reducing the presence of foam cells.

1.4.Study benefit

1.4.1. Benefit for science

This study is provide scientific evidence of the important role of EVOO to reduce proinflammatory cytokine and fat laden cells in high fat diet individual.

1.4.2. Benefit for research

The results of this study may give information for developing further research whether EVOO can be used as prevention for reducing the possibility of inflammation due to high fat diet.

1.5.Originality of the study

Based on searching on research publication on Pubmed National Library of Medicine National Institute of Health USA and other websites related with health, the study which analyze the effect of EVOO on foam cells and TNF α has not conducted yet in rat with high fat diet. There were several study related to current study as listed below.

NO	Title, Auther, Journal	Method	Results
1.	Chronic effects of a	Twenty male medical	Plasma concentrations of
	high-fat diet	students	lipid parameters, nitrates
	enriched with	Age : from 18 to 30 years	and nitrites (NOx) were
	virgin olive oil and	three of different diets for 4-	examined . The
	a low-fat diet	week	endothelium-dependent
	enriched with a-	Western diet, rich in	vasodilatory response was
	linolenic acid on	saturated fat, a	greater after the ingestion of
	postprandial	Mediterranean diet, rich in	the MUFA-rich diet than
	endothelial	MUFA, a low-fat diet	after the SFA or ALA low-
	function in healthy	enriched in ALA.	fat diets. The bioavailability
	men . Fuentes1, J.		of NOx was higher
	et al. 2008; 100.		following the MUFA diet
	159–65. ¹⁴		than after the SFA and ALA
			low-fat diets.
2.	Defining high-fat-	Male Wistar rats, age:	detected classical HF effects
	diet rat models:	six-week-old, high-fat diet	only in diets based on lard
	metabolic and	based on lard, olive oil,	and olive oil .PUFA did not
	molecular effects	coconut fat or fish oil	induce insulin resistance.
	of different fat	,Weight gain and food	Diets based on LC-SFA and
	types. Buettner R,	intake . After 12 weeks, an	MUFA induced hepatic

Table (1) Originality of the study

NO	Title, Auther, Journal	Method	Results
-	Parhofer K G, et al.	insulin tolerance test was	steatosis with SREBP1c
	2006; 36 , 485–	undertaken.	activation.
	501. ¹⁵		
3.	Differential Effects	Male Wistar rats .	HFDs and HCDs reduced
	of High-	age : 7 weeks and 180–200	weight gain in comparison
	Carbohydrate and	g	with CD. Calorie intake was
	High-Fat Diet	High-saturated fat diet	similar in both HFDs and
	Composition on	containing lard and the	CD,HUFD exhibited the
	Metabolic Control	high-unsaturated fat diet	most beneficial effects on
	and Insulin	containing olive oil. High-	glycemic control meanwhile
	Resistance in	digestible carbohydrate diet	HRSD induced the highest
	Normal Rats. Jorge	containing digestible corn	reduction on lipid content
	L. Ble-Castillo,	starch and the high-resistant	and did not modify insulin
	María A. et al.	starch diet with native	sensitivity.
	2012; <i>9</i> , 1663-76. ¹⁶	banana starch .	
4.	Comparison of	Albino Rats ,age :32 weeks,	serum HDL-c without
	Serum Cholesterol	with equal number of males	atherogenic diet at week 0
	Fractions Levels in	and females. experimental	and 32 . serum HDL-c with
	albino rats on	diets for 20 weeks. added	atherogenic diet at week 0
	monounsaturated	with olive oil	and 32 . serum LDL-c
	(Olive Oil) fat diet.	serum LDL-c	without atherogenic diet at
	Abro A. K.,		week 0 and 32 . serum
	Bukhari M. H.		cholesterol at week 0 and 32
	2009.17		. serum HDL-c at week 0
			and 32. The difference is
			statistically very highly
			signi-ficant .

The current study is different with several previous studies that listed above. In current study, research subjects are: first, effect of different doses of EVOO on the level of proinflammatory cytokine in Wistar rats induced by high fat diet. Second, the effect of EVOO in reducing the level of the current study variables TNF α and foam cells. The current study also use high fat diet and treatment in the same time.