PROFILING SERINE-THREONINE KINASE PHOSPHORYLATION IN TGFβ PATHWAY IN TAAD PATIENTS WITH TGFBR2 MUTATION

PROFIL FOSFORILASI KINASE SERINE THREONINE TGFβ PATHWAY PADA PASIEN TAAD DENGAN MUTASI TGFBR2

THESIS Submitted to fulfill the assignment and fit-out requisite in passing Post-Graduate Program

Faculty of Medicine Diponegoro University Semarang

Donny Nauphar 22010111400098

FACULTY OF MEDICINE DIPONEGORO UNIVERSITY SEMARANG 2013

PROFILING SERINE-THREONINE KINASE PHOSPHORYLATION IN TGFβ PATHWAY IN TAAD PATIENTS WITH TGFBR2 MUTATION

PROFIL FOSFORILASI KINASE SERINE THREONINE TGFβ PATHWAY PADA PASIEN TAAD DENGAN MUTASI TGFBR2

THESIS Submitted to fulfill the assignment and fit-out requisite in passing Post-Graduate Program

Faculty of Medicine Diponegoro University Semarang

Donny Nauphar 22010111400098

FACULTY OF MEDICINE DIPONEGORO UNIVERSITY SEMARANG 2013

THESIS

PROFILING SERINE-THREONINE KINASE PHOSPHORYLATION IN TGFβ PATHWAY IN TAAD PATIENTS WITH TGFBR2 MUTATION

Arranged by DONNY NAUPHAR, B.Sc. 22010111400098

Has been defended in front of the defense committee and has been approved by:

The Netherlands Principal Supervisor, Gerard Pals, PhD

Indonesia Principal Supervisor,

<u>Prof. Sultana MH Faradz, MD, PhD</u> NIP. 19520202 197901 2 001

Supervisor,

Supervisor,

Erik Sistermans, PhD

dr. Farmaditya E.P. Mundhofir, Msi.Med. PhD NIP. 19810425 200812 1 002

Approved by, Head of Master Degree Program in Biomedical Science Faculty of Medicine Diponegoro University

Prof. Dr. dr. Tri Nur Kristina, DMM, M.Kes NIP. 19590527 1986603 2 001

DECLARATION

I hereby declare that this thesis is my own work and has not been submitted in any forms for another degree or diploma at any university or other institution of tertiary education and there are no elements belonging as Plagiarism mentioned forth in Permendiknas No. 17 of 2010. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of reference is given.

Medan, December 2013

Donny Nauphar

CURRICULUM VITAE

Personal Data

Name	: Donny Nauphar
Sex	: Male
Nationality	: Indonesian
Place & Date of Birth	: Medan, November 25 th 1981
Last Degree	: Bachelor of Science (Biotechnology)
Address	: Jendral Gatot Subroto 236H, Medan,
	North Sumatera
	Indonesia 20119
Mobile Phone	: +62 81262511903
Email	: dnauphar@yahoo.com

Educational Background

- 1990-1995 Elementary School at SD Harapan 1 Medan
- 1995-1997 Junior High School at SMP Harapan 1 Medan
- 1997-1999 High School at SMU Negeri 4 Medan majoring in Natural Science
- 1999-2000 Sunway College, Canadian International Matriculation Program, Diploma in Science
- 2000-2003 Monash University, Bachelor of Science in Biotechnology

2012-	Post	Graduate	Program	Diponegoro	University.	Master	in
Present	Biom	edical Scient	nce Majori	ng in Genetic	Counseling (Joint Deg	ree
	Progr	am with Vr	ije Univers	iteit Amsterda	m, The Nether	rlands)	

Training and Course

2006	BRAHMS Kryptor Classic Field Service Engineer
	Cezanne, Nimes, France

- 2008 BRAHMS Kryptor Compact Field Service Engineer Cezanne, Nimes, France
- 2009 BRAHMS Kryptor Classic Expert Engineer Training Cezanne, Nimes, France
- 2009 **BRAHMS Kryptor Advanced Application Training** Cezanne, Nimes, France
- 2009 *Responsible Care and Use of Laboratory Animals* National University of Singapore Laboratory Animals Center
- 2011 Good Clinical Practices

Komisi Nasional Etik Penelitian Kesehatan in collaboration with Fakultas Kedokteran Universitas Sumatera Utara

- 2011 The 3rd Annual Pathobiology Course From Concept to Clinic: Leading Stem Cell Science and Medical Practice
 Ikatan Dokter Indonesia Sumatera Utara
- 2012 10th Medical Genetic Course: From Basic to Clinic
 Faculty of Medicine Diponegoro University in collaboration with
 Radboud University Nijmegen Medical Center, The Netherlands

2012 Workshop on Neurogenetics

Ikatan Dokter Indonesia Jawa Tengah

2012 Ciliary Dysfunction in Developmental Abnormalities and Diseases Symposium

> Center for Biomedical Research Faculty of Medicine Diponegoro University in collaboration with Radboud University Nijmegen Medical Center, The Netherlands

Working Experience

2009-2011	Dyamed Biotech Pte. Ltd. Singapore
	Senior Product Specialist

- 2009-2011 The Biofactory Pte. Ltd. Singapore Equipment Development Manager
- 2006-2009 Dyamed Biotech Pte. Ltd. Singapore

Product Specialist

Publications

2010 Device performance testing using the Microkit Lysonator prototype or sample preparation to investigate the use of DNA intercalating dyes for the distinction of live/dead cells by PCR *Singapore : Singapore Polytechnic, School of Chemical and Life Sciences, 2010.*

ACKNOWLEDGEMENT

It is a pleasure to express my gratitude to all of those who gave me the opportunity and support to complete this thesis. My heartfelt gratitude to my supervisor in Netherlands, Gerard Pals, PhD, and Erik Sistermans, PhD, for their support and encouragement in this research and for the hospitality during my stay in The Netherlands. Thank you for providing me the samples, adequate training and freedom to explore the topic that I am interested in during my research at the Center for Connective Tissue Disorders, Department of Clinical Genetics Vrije Universiteit Medisch Centrum, Amsterdam, The Netherlands.

My utmost gratitude to my teacher and supervisor, Prof. Dr. Sultana MH Faradz, PhD for her relentless support and guidance and despite her extremely busy schedule, still find time to encourage me to finish this thesis. Thank you to dr. Farmaditya EP Mundhofir, PhD for his patience and guidance in guiding me in writing this thesis.

My utmost gratitude to dr. Yahwardiah Siregar, PhD for the opportunity and all the support given to me during my research.

I wish to thank all the staff of the Center for Biomedical Research (CEBIOR), Semarang, Central Java, Indonesia, Dwi Kustiani, Intus, Lusi Suwarsi, Rita Indriati, and Wiwik Lestari for their assistance during my study.

I would also like to thank all the staff of the Department of Clinical Genetics Vrije Universiteit Medisch Centrum, Amsterdam, The Netherlands for their hospitality, help and guidance during my work in the laboratory. Special thanks to Dimitra Micha and Youssef Moutouakil for mentoring me in Cell Culture and DNA works. My sincere thanks to great colleagues that support me during my stay, Kirsten Verheul, Mark aan t'Goor, Ans Morren, Irma Van Der Beek, Haweya Shire, Wesley Busch, Gwen Kwak, Jorrit Pals, Emily Nash and Martijn Boone.

I wanted to thank Batch 6 students if the Masters in Biomedical Science, Almira Zada, An Nisaa Utami Tihnulat, Ariestya Indah Permata Sari, Gara Samara Brajadenta, Hesty Wahyuningsih, Isna Rahmia Fara, Stefani Harum Sari, Venty Muliana Sari, Ziske Maritska, Zukhrofi Muzar and Wahid Mouhib. Your support and encouragement has been a source of inspiration for me to finish this thesis.

My sincere thanks also go to all the patients, whose fibroblast have been examined in the Department of Clinical Genetics Vrije Universiteit Medisch Centrum, Amsterdam. Without them, this research would not be possible.

My utmost gratitude to my parents, Salim Usman and Juanita Tanuwijaya and my in-laws, Sujono Djojodihardjo and Setiawati, to my wife Sesilia Susetiasih and my boys, Dito Aditama Usman and Devin Saputra Usman, who have been my strength and my support in my research.

This opportunity to join the Master's Degree, to have my research in the Netherlands would not have been possible without the fellowship from Biro Perencanaan Kerjasama Luar Negeri (BPKLN), Ministry of Education, Indonesia, especially DR. AB Susanto, MSc. as the *Beasiswa Unggulan* program coordinator. I would like to thank all of the Master's Degree and Fellowship coordinators, especially Prof. Dr. Sultana MH Faradz, PhD, Dr. Tri Indah Winarni, MsiMed. PhD, Ms. Ardina Aprilani, and Dr. Farmaditya EP Mundhofir, PhD for all their hardwork.

CONTENTS

TITLE	i
APPROVAL SHEET	ii
DECLARATION	iii
CURRICULUM VITAE	iv
ACKNOWLEDGEMENT	vii
CONTENTS	Х
GLOSSARY	xiii
ABBREVIATIONS	xiv
LIST OF TABLES	xvi
LIST OF FIGURES	xvii
LIST OF APPENDIX	xviii
ABSTRACT (ENGLISH)	xix
ABSTRAK (BAHASA INDONESIA)	xx
CHAPTER 1 INTRODUCTION	1
1.1 Background	1
1.2 Research Question	3
1.3 Research Purpose	3
1.3.1 General Research Purposes	3
1.3.2 Specific Research Purposes	3
1.4 Research Benefits	4
1.5 Originality	4

CHAPTER 2 STATE-OF-THE-ART LITERATURE REVIEW		5
2.1 Thoracic Aortic Aneurysm and Dissection (TAAD		5
2.1.1	Epidemiology of TAAD	5
2.1.2	Classification and Diagnosis of TAAD	6
	2.1.2.1 Anatomical Classification of TAAD	6
	2.1.2.2 Clinical Classification of TAAD	8
	2.1.2.3 Diagnosis of TAAD	9
2.1.3	Pathogenesis of TAAD	12
	2.1.3.1 Anatomy and Histology of Thoracic Aorta	12
	2.1.3.2 Vascular Smooth Muscle Cells	13
	2.1.3.3 Extracellular Matrix	14
2.1.4	Molecular Pathology of TAAD	20
	2.1.4.1 Cytoskeletal Pathway TGFβ Pathway	20
	2.1.4.2 MMP Pathway	24
	2.1.4.3 ATII Pathway	25
2.2 Protein	n Kinases and Serine Threonine Kinases	26
2.3 Theore	etical Framework	28
2.4 Conceptual Framework		28
CHAPTE	R 3 RESEARCH METHODS	29
3.1 Resea	rch Field	29
3.2 Setting	gs, Location, and Period of Research	29
3.3 Research Design		29

3.4 Samples	
3.5 Kinase Substrate Profiling using PamStation and PamChip	30
3.5.1 Growing Cells	30
3.5.2 Seeding to 6-well plates	31
3.5.3 Serum Starvation	33
3.5.4 Stimulation with TGF-β1	33
3.5.5 Preparing Cell Lysates	33
3.5.6 Protein Concentration Determination	34
3.5.7 PamChip Serine-Threonine Microarray	34
3.6 Research Flow	38
3.7 Data Analysis	38
3.8 Research Ethics	39
CHAPTER 4 RESULTS	40
4.1 Array Images	40
4.2 Volcano Plot with Bionavigator log p-value and log fold-change	43
CHAPTER 5 DISCUSSION	48
CHAPTER 6 CONCLUSION AND FUTURE DIRECTIONS	55
CHAPTER 7 SUMMARY	56
RINGKASAN	60
REFERENCES	64
APPENDICES	71
ARTICLE	85
SUPPLEMENTARY MATERIAL	90

GLOSSARY

AneurysmA localized, blood-filled balloon-like bulge in the wall of a blood vessel.AortaA large blood vessel that distributes blood from the heart to the rest of the body.CanonicalTypical pathway utilized by a signal transduction pathway.DissectionTearing of layers in blood vessel that cause abnormal blood flow to occur in between the layers.FibroblastMost common connective tissue in animals. Responsible for synthesis of extracellular matrix and collagen.Kinase domainPart of the protein that contains tyrosine, serine, threonine, and histidine that are target for phosphorylation by protein kinases.Kinase substrateSpecific molecules target of protein kinase.LigandA molecule that binds on a receptor
AortaA large blood vessel that distributes blood from the heart to the rest of the body.CanonicalTypical pathway utilized by a signal transduction pathway.DissectionTearing of layers in blood vessel that cause abnormal blood flow to occur in between the layers.FibroblastMost common connective tissue in animals. Responsible for synthesis of extracellular matrix and collagen.Kinase domainPart of the protein that contains tyrosine, serine, threonine, and histidine that are target for phosphorylation by protein kinases.Kinase substrateSpecific molecules target of protein kinase.
the rest of the body.CanonicalTypical pathway utilized by a signal transduction pathway.DissectionTearing of layers in blood vessel that cause abnormal blood flow to occur in between the layers.FibroblastMost common connective tissue in animals. Responsible for synthesis of extracellular matrix and collagen.Kinase domainPart of the protein that contains tyrosine, serine, threonine, and histidine that are target for phosphorylation by protein kinases.Kinase substrateSpecific molecules target of protein kinase.
CanonicalTypical pathway utilized by a signal transduction pathway.DissectionTearing of layers in blood vessel that cause abnormal blood flow to occur in between the layers.FibroblastMost common connective tissue in animals. Responsible for synthesis of extracellular matrix and collagen.Kinase domainPart of the protein that contains tyrosine, serine, threonine, and histidine that are target for phosphorylation by protein kinases.Kinase substrateSpecific molecules target of protein kinase.
DissectionTearing of layers in blood vessel that cause abnormal blood flow to occur in between the layers.FibroblastMost common connective tissue in animals. Responsible for synthesis of extracellular matrix and collagen.Kinase domainPart of the protein that contains tyrosine, serine, threonine, and histidine that are target for phosphorylation by protein kinases.Kinase substrateSpecific molecules target of protein kinase.
flow to occur in between the layers.FibroblastMost common connective tissue in animals. Responsible for synthesis of extracellular matrix and collagen.Kinase domainPart of the protein that contains tyrosine, serine, threonine, and histidine that are target for phosphorylation by protein kinases.Kinase substrateSpecific molecules target of protein kinase.
FibroblastMost common connective tissue in animals. Responsible for synthesis of extracellular matrix and collagen.Kinase domainPart of the protein that contains tyrosine, serine, threonine, and histidine that are target for phosphorylation by protein kinases.Kinase substrateSpecific molecules target of protein kinase.
synthesis of extracellular matrix and collagen. Kinase domain Part of the protein that contains tyrosine, serine, threonine, and histidine that are target for phosphorylation by protein kinases. Kinase substrate Specific molecules target of protein kinase.
Kinase domainPart of the protein that contains tyrosine, serine, threonine, and histidine that are target for phosphorylation by protein kinases.Kinase substrateSpecific molecules target of protein kinase.
and histidine that are target for phosphorylation by protein kinases. Kinase substrate Specific molecules target of protein kinase.
kinases. Kinase substrate Specific molecules target of protein kinase.
Kinase substrate Specific molecules target of protein kinase.
Ligand A molecule that binds on a receptor
Microarray Collection of DNA or protein fragments embedded on a
solid surface. Often used for simultaneous analysis of large
number of genes or proteins.
Non-canonical Alternative pathway utilized by a signal transduction
pathway.
Protein kinase Enzyme that transfers high energy phosphate group for a
donor molecule to a specific acceptor molecule.
Receptor A protein molecule that receives ligands.
TGFβ pathway A molecular pathway that controls proliferation, apoptosis,
cellular differentiation, and other cellular functions.

ABBREVIATIONS

ACTA2	Actin Smooth Muscle Alpha 2
ATII	Angiotensin II
ATP	Adenosine Tri Phosphate
BAD	Bcl2 Antagonist of Cell Death
BAV	Bicuspid Aortic Valve
BCKDK	Branched-chain Ketoacid Dehydrogenase Kinase
BMP	Bone Morphogenetic Protein
COL3A1	Collagen type 3 Alpha 1
CGHB	Choriogonadotropin Subunit Beta Precursor
ECM	Extracellular Matrix
EDS	Ehler-Danlos Syndrome
EMT	Epithelial-to-Mesenchymal Transition
FBN1	Fibrillin 1
FRAP	FKBP12-rapamycin Complex-associated Protein
FTAAD	Familial Thoracic Aortic Aneurysm and Dissection
JNK	C-Jun N-terminal Kinase
KCNA	Potassium Voltage-gated Channel Subfamily A
LAP	Latency Associate Propeptide
LDS	Loeys-Dietz Syndrome
LLC	Large Latent Complex
LTBP	Latent TGF _β Binding Protein
MFS	Marfan Syndrome

MMP	Matrix Metalloproteinase
MTOR	Mammalian Target of Rapamycin
MYH11	Myosin Heavy Chain 11
MYLK	Myosin Light Chain Kinase
PI3K	Phosphoinositide 3-Kinase
RAP	Ras-related Protein
ROCK	Rho-associated Protein Kinase
RYR	Ryanodine Receptor
SLC	Small Latent Complex
SMAD	Small Mothers Against Decapentaplegic
SLRP	Small Leucine Rich Proteogylcans
SLRP SMURF2	Small Leucine Rich Proteogylcans Smad Ubiquitination Regulatory Factor 2
SMURF2	Smad Ubiquitination Regulatory Factor 2
SMURF2 TAA	Smad Ubiquitination Regulatory Factor 2 Thoracic Aortic Aneurysms
SMURF2 TAA TAD	Smad Ubiquitination Regulatory Factor 2 Thoracic Aortic Aneurysms Thoracic Aortic Dissection
SMURF2 TAA TAD TAK	Smad Ubiquitination Regulatory Factor 2 Thoracic Aortic Aneurysms Thoracic Aortic Dissection TGFβ-activated Kinase
SMURF2 TAA TAD TAK TAAD	Smad Ubiquitination Regulatory Factor 2 Thoracic Aortic Aneurysms Thoracic Aortic Dissection TGFβ-activated Kinase Thoracic Aortic Aneurysms and Dissection
SMURF2 TAA TAD TAK TAAD TGFβ	Smad Ubiquitination Regulatory Factor 2 Thoracic Aortic Aneurysms Thoracic Aortic Dissection TGFβ-activated Kinase Thoracic Aortic Aneurysms and Dissection Transforming Growth Factor Beta

LIST OF TABLES

Table 1	Normal adult aortic diameters	6
Table 2	Risk factors for development of thoracic aortic dissection	8
Table 3	Samples and controls	30
Table 4	Significant peptides from unstimulated controls and mutants	44
Table 5	Significant peptides from stimulated controls and mutants	45
Table 6	Function and mutation effects of the significant peptides from the	49
	unstimulated group	
Table 7	Function and mutation effects of the significant peptides from the	50
	unstimulated group.	

LIST OF FIGURES

Figure 1	Classification of thoracic aortic dissection	7
Figure 2	Normal anatomy of the thoracoabdominal aorta	12
Figure 3	Fibrillin formation and its relation to other proteins	17
Figure 4	The cytoskeletal pathway of TAAD	20
Figure 5	The canonical and non-canonical TGF β pathway	23
Figure 6	Proposed Regulation of SMADs and downstream transcription	27
Figure 7	Plate 1 – Unstimulated samples	32
Figure 8	Plate 2 – Stimulated samples	32
Figure 9	The PamStation12	35
Figure 10	The Serine-Threonine Kinase PamChip and Reagents	35
Figure 11	The PamChip Array	36
Figure 12	PamChip sample layout	37
Figure 13	Array images	42
Figure 14	Volcano plot of unstimulated controls and sample	44
Figure 15	Volcano plot of stimulated controls and samples	47
Figure 16	Peptide hits on the TGFβ pathway	51
Figure 17	A schematic representation of SMAD2 and SMAD3	52
Figure 18	Possible pathways for targeted drug therapy	54

LIST OF APPENDIX

Appendix I	Informed Consent Form	59
Appendix II	Calculation Example for 6-well plate seeding	63
Appendix III	Calculation of TGF- β 1 concentration for stimulation	64
Appendix IV	Kinase substrate list on Serine-Threonine Kinase	65
	PamChip	
Appendix V	PamStation12 Protocol	71

ABSTRACT

Background: Thoracic aortic aneurysm and dissection (TAAD) is one of the top 20 most leading causes in the USA and one of the silent killers in the world. The dysregulation of TGF β pathway has been linked with pathogenesis of the disease. TGF β pathway is a tightly regulated pathway that is controlled by phosphorylation of their downstream secondary messenger. The kinase substrate peptide microarray is utilized to see how the phosphorylation pattern of TGF β downstream secondary messenger is regulated in TAAD patient.

Methods: Fibroblast samples from 3 mutants with TAAD carrying TGF β RII mutations and 3 normal patients were grown and stimulated with TGF- β 1after 24 hours of serum starvation. The cells were then lysed and their protein concentration determined using bicinchoninic acid (BCA) assay. The phosphorylation of kinase substrate peptides were then analyzed using Serine-Threonine Kinase Microarray Chip.

Results: Kinase substrate peptides were chosen based on the significant phosphorylation changes between controls and mutants of the stimulated and unstimulated groups. Four kinase substrate peptides were found underphosphorylated between the controls and mutants of the TGF- β 1 unstimulated group. The TGF- β 1 stimulated group yields 34 significantly over-phosphorylated peptides and 1 under-phosphorylated peptide.

Conclusion: The non-canonical and canonical pathway is activated simultaneously in TAAD patients despite the absence of TGF β RII. Kinase substrate peptide has huge potential to unravel the complicated TGF β pathway via studying the phosphorylation pattern of TGF β downstream secondary messenger.

Keywords: Thoracic aortic aneurysm and dissection, TGF- β 1, *TGF\betaRII*, Serine-Threonine Kinase, Microarray

ABSTRAK

Latar Belakang: *Thoracic aortic aneurysm and dissection* (TAAD) adalah salah satu dari 20 penyebab kematian tertinggi di Amerika Serikat dan merupakan salah satu *silent killer* di dunia. Disregulasi *pathway* TGF β sering dikaitkan dengan pathogenesis aneurisma dan diseksi aorta. Komunikasi instraseluler TGF β adalah proses yang sangat teratur dan terjaga yang dikontrol ketat dengan fosforilasi komponen intraselulernya. Microarray peptida substrat kinase dapat digunakan untuk mempelajari bagaimana pola fosforilasi komponen intraseluler TGF β diatur apda pasien TAAD.

Metode: Sampel fibroblast dari 3 mutan TAAD dengan mutasi TGF β RII dan 3 sampel normal dikultur dan di stimulasi dengan TGF- β 1 setelah puasa serum selama 24 jam. Sel-sel tersebut kemudian di lisis dan konsentrasi proteinnya dihitung dengan *bicinchoninic acid (BCA) assay*. Pola fosforilasi peptide substrat kinase dianalisa dengan menggunakan *Serine-Threonine Kinase Microarray Chip*.

Hasil: Peptida substrat kinase dipilih berdasarkan besar perubahan pola fosforilasi antara kontrol dan mutan pada grup yang distimulasi dan tidak distimulasi. Empat peptida substrat kinase memiliki tingkat fosforilasi yang sedikit lebih rendah antara mutan dan kontrol pada grup yang tidak distimulasi dengan TGF- β 1. Mutan pada grup yang distimulasi dengan TGF- β 1 memiliki 34 peptida yang memiliki tingkat fosforilasi yang sedikit lebih rendah dibandingkan dengan kontrol.

Kesimpulan: *Pathway canonical* dan *non-canonical* tetap aktif secara bersamaan pada pasien TAAD walaupun tidak memiliki TGF β RII. *Microarray* adalah metode yang berpotensi untuk mengungkap *pathway* TGF β yang kompleks melalui analisa pola fosforilasi reseptor intraseluler *TGF* β .

Keywords: *Thoracic aortic aneurysm and dissection*, TGF-β1, *TGFβRII*, kinase Serine-Threonine, *Microarray*