CHAPTER I

INTRODUCTION

1.1 Background

Recurrent Pregnancy Loss (RPL), also referred to as recurrent miscarriage, is defined as two or more consecutive pregnancy losses prior to 20 weeks from the last menstrual period, it affects approximately 1% to 2% of women. ^{1,2} The incidence of RPL approximately 1 in 300 pregnancies.² One of the factor that may related to pregnancy loss is trombophilia. The mechanism thought that early fetal loss occurs as a result of damage to chronic vessels, reduced trophoblast invasiveness or apoptosis. Impaired uteroplacental circulation due to thrombosis on maternal side of the placenta may explain late fetal loss.³ One example of hereditary trombophilic elements is methilentetrahydrofolate reductase (*MTHFR*) gene.⁴

MTHFR enzyme plays role in homocystein metabolism by catalyzing the conversion of 5,10 methylenetetrahydrofolate to 5 methylenetetrahydrofolat, the methyl group donor in B12 dependent remethylation of homocystein to methionine. Polymorphism of *MTHFR* gene (677 C->T) is the most common polymorphism which can reduced enzyme activity.⁵

A significant association between MTHFR gene polymorphism with RPL has been confirmed by some studies. Nelen et all found there was a significant OR (x2) of 3.3 (95% Cl 1.3-10.1) in women with REPL comparing the prevalence of the homozygous genotype versus the other two genotype which is mean that homozygosity for the 677 C-T mutation in *MTHFR* gene is associated with a two to three fold risk of REPL.⁶ Whereas other deprived of this association.^{7,8} Since data related to trombophilia due to *MTHFR* C677T gene polymorphism to RPL among Indonesian women are relatively lacking, we proposed this study to determine this association.

1.2 Research Question

1.2.1 General Research Question

How are the presence and gene distribution of *MTHFR* C677T gene polymorphism in Indonesian women with RPL?

1.2.2 Research question in detail

- How is genotype distribution of *MTHFR* C677T gene polymorphism in Indonesian women with RPL?
- 2. How is allele distribution of *MTHFR* C677T gene polymorphism in Indonesian women with RPL?

1.3 Research objectives

1.3.1 General objective

To search for the presence and gene distribution of *MTHFR* C677T gene polymorphism in Indonesian women with RPL.

1.3.2 Specific objectives

1. To identify genotype distribution of *MTHFR* C677T gene polymorphism in Indonesian women with RPL.

2. To identify allele distribution of *MTHFR* C677T gene polymorphism in Indonesian women with RPL.

1.4 Research advantages

- 1. To know the underlying of RPL related to genetic defect, in order to search for *MTHFR* C677T gene polymorphism in Indonesian women with RPL.
- 2. To encourage public awareness of genetic diseases, especially for the women with RPL in Indonesia.
- 3. To give more attentions about the importance of genetic counseling related to folic acid supplementation therapy and correlation with RPL especially for the women who still want to have pregnancy, also for Indonesian society.

1.5 Research originality

This is the first study to identify *MTHFR* C677T Polymorphism in RPL patients. The characteristic of this study compare to others are that the study only identify one polymorphism which is *MTHFR* C677T polymorphism, and secondly the study will be conducted to the RPL patients in Indonesia.

Table 1. Research originality	1. Research origina	ılity
-------------------------------	---------------------	-------

No.	Author	Title of Publication	Method	Result
1.	Tehrani	Analysis of	PCR-RFLP	MTHFR 677
	MJ,	Plasminogen activator	to assess the	C/T and
	Torabi R,	Inhibitor-1, Integrin	frequency of	1298 A/C
	Zarnani A	Beta3, Beta	5 candidate	polymorphis
	H, et all	Fibrinogen, and	genetic risk	m were
	(2011,	Methylenetetrahydrofol	factor for	found to be
	American	ate Reductase	RPL, case	positively
	Journal of	Polymorphisms in	and control	associated
	Reproduct	Iranian Women with	groups	with RPL.
	ive	RPL		The
	Imunolog			presence of
	y)			both
				mutations of
				MTHFR
			1	

				genes highly
				increased
				the risk of
				RPL.
2.	Settin A,	Methylenetetrahydofol	Detection of	Unexplained
	Elshazli	ate Reductase Gene	MTHFR	pregnancy
	R, Salama	Polymorphisms in	C677T and	loss showed
	A, Elbaz	Egyptian Women with	A1298C	higher
	R (2011,	Unexplained RPL	polymorphis	frequency of
	Genetic		ms was done	the
	Testing		by PCR-	homozygous
	and		RFLP	mutant
	Molecular			MTHFR 677
	Biomarker			TT, 1298
	s)			CC
				genotypes
				and the
				mutant
				haplotype
				677T/1298C
				, although
				not reaching
				statistical

				significance
3.	Nelen	Genetic risk factor for	All	There was
	WLDM,	unexplained recurrent	participant	significant
	Steegers	early pregnancy loss	were	OR (x_2) of
	EAP,		screened for	3.3 (95% CI
	Eskes		the 677 C-T	1.3 – 10.1)
	TKAB,		mutation by	in the
	Blom HJ		PCR and	women with
	(The		RFLP with	recurrent
	Lancet,		HinF1	unexplained
	1997)			pregnancy
				loss
				comparing
				the
				prevalence
				of the
				homozygous
				genotype
				versus the
				other two
				genotype.