BAB II

TINJAUAN PUSTAKA

2.1 Bata Ringan

Bata ringan adalah bata berpori yang memiliki *density* (nilai berat jenis) yang lebih ringan daripada bata pada umumnya. Berat jenis dari bata ringan ini berkisar antara 600-1600 kg/m³ dengan kekuatannya yang bergantung pada komposisi campurannya (SNI 8640 - 2018). Bahan – bahan penyusun dari bata ringan pada umumnya yaitu pasir , semen, air, dan *foaming agent*. Proses pembuatan bata ringan umumnya dilakukan dengan cara pencampuran bahan – bahan penyusun lalu dicetak serta diuji sesuai standar SNI 8640 - 2018. Bata ringan merupakan salah satu bahan bangunan yang berfungsi sebagai konstruksi pada dinding dan umum dipergunakan di masyarakat.

Syarat mutu bata ringan menurut SNI 8640 – 2018 adalah memiliki bidang permukaan bata yang tidak cacat dengan toleransi masih dapat ditutup oleh pasangan mortar. Rusuk – rusuknya siku terhadap yang lain dan tidak mudah dirusak dengan kekuatan tangan. Susunan bata ringan pada pemasangan harus rapih dan baik. Ruang lingkup standar ini meliputi ruang lingkup, acuan, definisi, klasifikasi, syarat mutu, syarat fisis, pengambilan contoh, cara uji, dan syarat lulus uji.

Klasifikasi bata ringan adalah sebagai berikut :

1. Ukuran atau Dimensi

Dimensi dan toleransi bata ringan harus mengacu pada SNI 8640 – 2018 dan ditentukan oleh produsen pembuat bata ringan berdasarkan proses produksi yang dilakukan. Dimensi bata ringan dapat disebutkan dalam panjang, lebar, dan tebal serta toleransi ukuran pada tabel 2.1. Selain dimensi tabel tersebut, produsen dapat memproduksi ukuran yang berbeda. Toleransi dimensi digunakan untuk menentukan proses pemasangan dinding menggunakan pasangan mortar tebal maupun mortar tipis. Tebal dinding yang digunakan bergantung pada fungsi penggunaan dinding, sebagai pemisah bangunan ataupun sebagai pemisah ruangan, dan bergantung pada spesifikasi penyerapan suara atau termal yang dikendahaki.

Tabel 2. 1 Ukuran Bata Ringan

Ukı	Ukuran (mm)									
Panjang	Lebar	Tebal	(mm)							
600 +3	200 +3	75	±2							
-5	-5	100								
		125								
		150								

(Sumber: SNI 8640, 2018)

2. Berat

Bata ringan dapat diproduksi dengan target berat yang berbeda – beda sehingga produsen perlu mengatur tentang bobot isi bata ringan yang dihasilkan. Berat bata ringan dibedakan atas kategori berat seperti yang terlihat pada tabel 2.2.

Tabel 2. 2 Berat Bata Ringan

	Kategori Berat	Ba Struk		Bata Nonstruktural		
		Terekspos Lingkungan (Outdoor)	Tidak Terekspos Lingkungan (<i>Indoor</i>)	Terekspos Lingkungan (Outdoor)	Tidak Terekspos Lingkungan (Indoor)	
Kelas		IA	IB	IIA	IIB	
Bobot	500			400 -	- 600	
isi	700		600 - 800	600 -	- 800	
kering	900	800 - 1000	800 - 1000	800 –	1000	
oven	1100	1000 - 1200	1000 - 1200	1000 -	- 1200	
(kg/m^3)	1300	1200 - 1400	1200 - 1400	1200 -	- 1400	

(Sumber: SNI 8640, 2018)

3. Syarat Fisis

Berdasarkan fungsi dan kondisi bata ringan maka bata ringan harus memenuhi syarat – syarat fisis yang sesuai dengan tabel 2.3.

Tabel 2. 3 Syarat Fisis Bata Ringan

		Ва	ata	Bata			
		Struk	ctural	Nonstruktural			
		Terekspos Tidak		Terekspos	Tidak		
	Satua	Lingkunga	Terekspos	Lingkunga	Terekspos		
	n	n	Lingkunga	n	Lingkunga		
		(Outdoor)	n (Indoor)	(Outdoor)	n (<i>Indoor</i>)		
Kelas		IA	IB	IIA	IIB		
Kuat Tekan							
Rata – Rata,	Mpa	6	2				
min							
Kuat Tekan							
Individu,	Mpa	5.4	3.6	1.8			
min							
Penyerapan	% vol	25		25			
Air, maks	70 VOI	23	-	23	-		
Tebal, min	mm	9	8	98	73		
Susu							
Pengeringan	%	0.2					
, min							

(Sumber: SNI 8640, 2018)

2.2 Bahan Penyusun Bata Ringan

Bahan penyusun bata ringan pada umumnya merupakan pasir, semen, air, dan foaming agent. Berikut ini penjelasan mengenai bahan – bahan dari pembuatan bata ringan.

1. Pasir

Butiran mineral yang bentuknya mendekati bulat dengan ukuran lebih kecil dari 2,36 mm standar (ASTM C33-03 Standard Spesification for Concrete Aggregates, 2022) disebut sebagai pasir atau agregat halus. Adapun perhitungan berat jenis pada material pasir ini. Berat jenis pada pasir yang digunakan pada penelitian ini adalah :

Keterangan:

 ρ = massa jenis (kg/L)

m = massa benda (kg)

v = volume benda (L)

Perhitungan:

$$\rho = \frac{m \text{ (kg)}}{v \text{ (L)}}$$

$$\rho = \frac{0,480}{0,300}$$

$$\rho = 1,6 \text{ kg/L} = 1,6 \text{ gr/cm}^3$$

2. Semen Portland

Semen adalah bahan perekat yang memiliki sifat mampu mengikat bahan – bahan bangunan yang padat menjadi kompak dan kuat (Bonardo Pangaribuan, 2013). Di dalam semen terdapat banyak kandungan mineral dan kimia. Secara umum semen terdiri dari oksida kalsium (CaO), oksida silika (SiO2), oksida alumunium (Al2O3), dan oksida besi (Fe2O3) (Amelia, 2022). Selain itu semen juga mengandung oksida magnesium (MgO), oksida alkali (Na2O dan K2O), oksida titan (TiO2), oksida fosfor (P2O5), serta gipsum atau kalsium sulfat (CaSO4.2H2O). Kualitas dari semen dapat dipengaruhi oleh setiap kandungan tertentu dari suatu bahan.

Menurut (SNI 15-2049, 2004) semen portland merupakan semen hidraulis yang didapatkan dengan cara menghaluskan *klinker* yang terdiri dari silikat – silikat kalsium yang bersifat hidraulis, dan bahan tambahan berupa gypsum. Berikut adalah jenis – jenis semen portland :

- a. Jenis I : Tidak memiliki persyaratan khusus dan dapat digunakan secara umum.
- b. Jenis II : Memiliki panas hidrasi sedang dan digunakan untuk beton tahan sulfat.
- c. Jenis III : Digunakan untuk beton yang memiliki kekuatan awal tinggi (cepat mengeras).
- d. Jenis IV : Digunakan untuk beton yang membutuhkan panas hidrasi rendah.
- e. Jenis V: Digunakan untuk beton yang sangat tahan sulfat.

Semen yang akan digunakan pada penelitian ini adalah semen portland jenis I yang penggunaannya tidak memerlukan persyaratan khusus pada semen jenis lainnya. Adapun perhitungan berat jenis pada material semen ini. Berat jenis pada semen yang digunakan pada penelitian ini adalah :

Keterangan:

 $\rho = \text{massa jenis (kg/L)}$

m = massa benda (kg)

v = volume benda (L)

Perhitungan:

$$\rho = \frac{m \text{ (kg)}}{\text{v (L)}}$$

$$\rho = \frac{0,375}{0,300}$$

$$\rho = 1.25 \text{ kg/L} = 1.25 \text{ gr/cm}^3$$

3. Air

Air adalah bahan dasar yang penting dalam pembuatan bata ringan. Air dibutuhkan sebagai reaktor kimia, pembentukan busa, peredam panas, dan pengaturan kekerasan pada pembuatan bata ringan. Proporsi yang tepat dan pengaturan yang baik dalam penggunaan air akan mempengaruhi kualitas dan karakteristik akhir dari bata ringan yang dihasilkan.

4. Foaming agent

Foaming agent merupakan campuran bahan bata ringan yitu suatu larutan pekat dari bahan sulfaktan dan harus dilarutkan dengan air saat hendak digunakan. Penggunaan foaming agent dilakukan untuk membentuk pori – pori pada bata ringan dengan membentuk gelumbung – gelembung gas/udara pada adukan semen.

Ada 2 macam foaming agent yaitu:

- 1. Bahan sintetis dengan kepadatan diatas 1000 kg/m³
- 2. Bahan protein dengan kepadatan 400 1600 kg/m³

2.3 Bahan Tambah Kulit Tiram

Bahan tambah bata ringan pada penelitian kali ini menggunakan limbah kulit tiram. Limbah kulit tiram merupakan kulit dari kerang tiram yang sudah tidak terpakai. Pada umumnya kerang tiram hanya dijadikan sebagai olahan makanan yang kemudian cangkangnya dibuang begitu saja. Walaupun tidak sedikit masyarakat yang menyadari bahwa limbah kulit tiram dapat digunakan sebagai bahan dari produk kerajinan tangan, tetapi belum sepenuhnya efektif dipergunakan.

Limbah kulit tiram sendiri memiliki kandungan antara lain CaCO3 (95.99%), SiO2 (0.69%), Al2O3 (0.42%), MgO (0.65%), P2O5 (0,20%), Na2O (0.98%), SrO (0.33%), dan SO3 (0.72%) (Lia Handayani, 2018).

Kalsium karbonat yang sangat tinggi dalam kandungan limbah kulit tiram ini dapat berfungsi sebagai bahan substitusi dari semen untuk mengurangi salah satu bahan penyusun dari semen yaitu klinker. Maraknya limbah kulit tiram ini dapat menekan penggunaan klinker dari segi biaya dan dapat mengurangi pencemaran lingkungan dari limbah tersebut terutama di daerah pesisir. Pada umumnya, penambahan sebagian campuran untuk semen dengan kalsium karbonat biasanya dilakukan dalam jumlah yang terbatas, misalnya sekitar 10% hingga 20% dari berat semen. Namun, presentase substitusi yang tepat dapat bervariasi tergantung pada persyaratan teknis, standar industri, dan rekomendasi dari produsen atau ahli bangunan. Kalsium karbonat pada limbah kulit tiram lebih dari 90% dari berat total limbah kulit tiram. Adapun perhitungan berat jenis pada material serbuk kulit tiram ini. Berat jenis pada serbuk kulit tiram yang digunakan pada penelitian ini adalah:

Keterangan:

 $\rho = massa jenis (kg/L)$

m = massa benda (kg)

v = volume benda (L)

Perhitungan:

$$\rho = \frac{m \text{ (kg)}}{v \text{ (L)}}$$

$$\rho = \frac{0,360}{0.300}$$

$$\rho = 1.2 \text{ kg/L} = 1.2 \text{ gr/cm}^3$$

2.4 Bata ringan CLC (Cellular Lightweight Concrete)

Salah satu tipe bata ringan adalah bata ringan CLC (Cellular Lightweight Concrete) yang terbentuk dari campuran berupa air, pasir, semen, dan foaming agent yang berbentuk butiran udara dalam pencampurannya. Selama periode pengerasan butiran udara tersebut harus mampu mempertahankan struktur gelembung tanpa menyebabkan reaksi kimia.

Perbandingan komposisi penyusun dari bata ringan CLC berbeda – beda sesuai dengan pabrikan masing – masing. Namun dalam penelitian ini perbandingan komposisi bata ringan yang digunakan yaitu pasir, semen, air, dan *foaming agent* sesuai komposisi yang telah ditentukan dengan perbandingan semen : pasir yaitu 1 : 2 dengan FAS sebesar 0,35 (Abdul Majid dkk, 2018) dengan penambahan limbah kulit tiram sebagai substitusi terhadap semen sebanyak 0%, 3%, 6%, 9%, dan 12% serta penggunaan *foaming agent* sebanyak 1 : 50 liter (*foam agent* : air) dari 40% volume benda uji. Bata ringan CLC memiliki densitas antara 400 kg/m³ hingga 1800 kg/m³. Namun untuk pekerjaan struktur, CLC yang baik untuk digunakan berkisar antara 1200 kg/m³ hingga 1400 kg/m³ (Bella, 2017).

2.5 Densitas (Berat Jenis)

Densitas dilakukan dengan cara pengukuran massa setiap satuan volume benda. Dimana semakin besar massa jenis benda maka semakin massa di setiap volume benda. Berdasarkan densitas, bata ringan dibagi menjadi 3 bagian yang mengacu pada (SNI 8640, 2018):

- a. Kepadatan rendah (400 600 kg/m³)
- b. Kepadatan sedang $(800 1000 \text{ kg/m}^3)$
- c. Kepadatan tinggi (1200 1400 kg/m³)

2.6 Daya Serap Air

Daya Serap Air merupakan kemampuan bata ringan dalam penyerapan air saat direndam menyerap hingga memiliki massa jenuh. Pori-pori atau rongga dapat memengaruhi besar kecilnya penyerapan air. Persyaratan nilai daya serap air terdapat pada (SNI 8640, 2018).

2.7 Kuat Tekan Bata Ringan

Kuat tekan bata ringan merupakan kemampuan bata ringan untuk menerima gaya tekan persatuan luas. Perhitungan besar kuat tekan dilakukan dengan cara membagi beban maksimum pada saat benda uji hancur dengan luas penampang benda uji (SNI 8640, 2018).

2.8 Penelitian Terdahulu

Pemanfaatan limbah kulit tiram pada dunia konstruksi sudah sering dilakukan sejak dahulu, berikut adalah penelitian – penelitian terdahulu mengenai limbah kulit tiram pada dunia konstruksi yang dijadikan landasan dalam melakukan penelitian.

Tabel 2.5 Penelitian Terdahulu

No	Judul	Peneliti	Tahun	Tujuan	Metode	Hasil
1	Pemanfaatan	Wahyu	2021	Untuk mengetahui	Metode yang dilakukan	Kuat tekan beton dengan
	Limbah Kulit	Ningsih		pengaruh limbah kulit	adalah dengan metode	penambahan kulit kerang
	Kerang Dara			kerang dara terhadap	eksperimental yang	dara mengalami kenaikan
	Sebagai Pengganti			semen dengan variasi	mengacu pada SNI 03-	di setiap variasinya,
	Sebagian Semen			0%, 1%, 3%, 5%, dan	2834-2000 dengan benda	begitu juga dengan kuat
	Pada Campuran			7% pada kuat tekan dan	uji beton silinder	tarik belah beton yang
	Beton			kuat tarik di umur 28 hari	sebanyak 30 sampel	mengalami kenaikan
						pada setiap variasi
2	Penggunaan Abu	Tonggok	2019	Untuk mengetahui	Metode eksperimental	Pada penelitian ini
	Batu Gamping	Dian S, dkk		pengaruh penggunaan	dengan variasi 0%, 10%,	didapatkan hasil kuat
	Sebagai Bahan			abu batu gamping dan	15% dan 20%.	tekan maksimal pada
	Pembuatan Bata			foam agent 40% terhadap		penambahan 20% abu
	Ringan			bata ringan.		batu yaitu 1 MPa.

3	Pemanfaatan	Muhammad	2019	Untuk mengetahui sifat	Penelitian ini	Pada penelitian hasil kuat
	Limbah Kulit	Haikal dan		dan karakteristik yang	menggunakan metode	tekan mortar maksimal
	Kerang Darah	Firdaus		berkaitan dengan daya	eksperimental di	berada pada penambahan
	Sebagai Substitusi			tahan dan kekuatan kulit	laboratorium.	kulit kerang 5-10%.
	Semen Pada			kerang dara sebagai		Penambahan kulit kerang
	Mortar			bahan pengganti semen.		yang lebih dari 10%
						menyebabkan
						menurunnya kuat tekan
						mortar.
4	Desain Bahan	Abdul	2018	Untuk memperoleh	Metode yang digunakan	Dalam waktu 28 hari
	Dasar Campuran	Majid,		komposisi yang ideal	adalah eksperimental	hasil pengujian terbaik
	Bata Ringan dari	Abdul		pada komposisi bata		berada pada variasi 1
	Limbah Tambang	Rohman,		ringan dan mendapatkan		(semen): 2 (tailing).
	Emas Pongkor	dan		nilai karakteristik bata		
		Raiyyan		ringan dari substitusi		
		Rahmi Isda		limbah tailing.		
5	Pengaruh Serbuk	Muhammad	2018	Untuk mengetahui nilai	Metode yang digunakan	Hasil penelitian kuat
	Cangkang Sebagai	Farid		kuat tekan dan	adalah uji laboratorium	tekan maksimum berada

	Bahan Pengganti	Jananda		penyerapan air pada bata		pada persentase 4%.
	Sebagian Semen			ringan seluler berbahan		Penyerapan air maksimal
	Terhadap Berat			dasar bottom ash dengan		berada pada persentase
	Volume, Kuat			substitusi serbuk		4%.
	Tekan, dan			cangkang kerang.		
	Penyerapan Air					
	Bata Beton Ringan					
	Seluler Berbahan					
	Dasar Bottom Ash.					
6	Pengaruh Kalsium	Nobertus	2021	Untuk mengkaji kalsium	Metode penelitian yang	Hasil penelitian ini
	Karbonat (CaCO3)	Rombe		karbonat sebagai	digunakan pada	menunjukkan bahwa
	Sebagai Bahan	Seru, Jonie		pengganti semen pada	penelitian ini adalah uji	makin tinggi persentase
	Substitusi Semen	Tanijaya,		sebagian beton.	laboratorium	variasi kalsium karbonat
	pada Beton Mutu	Lisa				dapat mengurangi nilai
	Tinggi	Febriani				mutu beton.
7	Uji Kuat Tekan	Leis David	2019	Untuk mengetahui	Metode yang digunakan	Hasil pengujian kuat
	dan Daya Serap			manfaat abu cangkang	adalah metode	tekan pada variasi 5%
	Air Batako Dengan			kerang pada pembuatan	eksperimental	dan 25% memenuhi

	Variasi			batako ramah lingkungan		standar SNI 3-0349-
	Penambahan Abu			dengan variasi abu		1989. Hasil uji daya
	Cangkang Kerang			kerang 5%, 15%, 25%,		serap air pada semua
				dan 30%.		variasi memenuhi standar
						SNI 3-0349-1989.
8	Pemanfaatan	Alfred	2015	Untuk mengetahui hasil	Metode yang digunakan	Kuat tekan optimal
	Limbah Kerang	Edvant		pengujian kuat tekan	adalah metode	berada pada substitusi
	Hijau (<i>Perna</i>	Liemawan,		beton dan untuk	eksperimental dan data	5% sebesar 20,98 MPa.
	Viridis L.) sebagai	Tavio, dan		mengetahui berat volume	kuantitatif	Berat volume paling
	Bahan Campuran	I Gusti		beton dengan		ringan yaitu pada
	Kadar Optimum	Putu Raka		penambahan cangkang		persentase 20% sebesar
	Agregat Halus			kerang hijau (Perna		9.710 kg.
	pada Beton Mix			Viridis L.) pada		
	Design dengan			penambahan variasi		
	Metode Substitusi			sebesar 0%, 5%, 10%,		
				15%, dan 20%.		
				Pengujian dilakukan		
				pada umur 7, 14, dan 28		
				hari.		
	1		i e		1	1

Dari beberapa jurnal penelitian terdahulu yang telah dilampirkan di atas, jurnal yang berjudul tentang Pemanfaatan Limbah Kulit Kerang Dara Sebagai Pengganti Sebagian Semen Pada Campuran Beton tahun 2021 yang ditulis oleh Wahyu Ningsih merupakan jurnal penelitian yang paling mendekati dari aspek – aspek penelitian yang akan kami lakukan.